• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
改进F-score特征选择的MPSO-BP神经网络短期负荷预测
Short term load forecasting of BP neural network improved by particle swarm optimization based on improved F-score feature selection
Received:July 31, 2017  Revised:July 31, 2017
DOI:
中文关键词: F-score特征选择  降维  最优特征子集  改进粒子群
英文关键词: F-score  feature selectionS, dimensionality  reduction, the  optimal feature  subset, MPSO
基金项目:国家高技术研究发展计划(863计划);国家电网公司科技项目“智能配用电大数据大数据应用关键技术深化研究”。
Author NameAffiliationE-mail
Ding jianyong School of Electrical Engineering, Wuhan University jyding@whu.edu.cn 
zhubingxiang* School of Electrical Engineering, Wuhan University 2016202070015@whu.edu.cn 
Tian shiming China Electric Power Research Institute 2016202070015@whu.edu.cn 
Bo fanpeng China Electric Power Research Institute 2016202070015@whu.edu.cn 
Chen junyi School of Electrical Engineering, Wuhan University 2010202070017@whu.edu.cn 
Zhu tiantong School of Electrical Engineering, Wuhan University 2010202070020@whu.edu.cn 
Hits: 1259
Download times: 517
中文摘要:
      随着智能电网的建设,影响短期负荷预测精度的因素也越来越多。针对海量数据本文提出一种基于改进Fisher分数(F-score)特征选择的改进粒子群优化的BP(modified particle swarm optimization and back propa- gation, MPSO-BP)神经网络短期负荷预测方法。首先采用改进F-score特征评价准则计算影响负荷预测精度的各个特征的F-score值,衡量每个特征的重要程度,再通过F-score Area法设定阈值筛选出最优特征子集,然后将最优特征子集作为MPSO -BP神经网络模型的输入变量完成对预测日一天24点负荷的预测,并与MPSO -BP神经网络短期负荷预测和传统的BP神经网络短期负荷预测进行对比。算例表明,本文提出的短期负荷预测方法可以较好地对海量数据进行挖掘,具有较高的预测精度。
英文摘要:
      With the construction of intelligent power grid, the factors affecting the accuracy of short-term load forecasting are increasing. In this paper, a short-term load forecasting method of MPSO-BP neural network based on improved F-score feature selectionSis proposed. Firstly, the improved F-score feature evaluation criterion is used to calculate the F-score value of each feature affecting the load forecasting accuracy, and the importance of each feature is measured, Then, the optimal feature subset was selected by the F – score Area method,By using the optimal feature subset as input variable of the MPSO-BP neural network model to complete the forecast of 24 point load, comparing with the short-term load forecasting of MPSO-BP neural network and he traditional BP neural network short-term load forecasting. The calculation example shows that the short-term load forecasting method proposed in this paper can be used to excavate the massive data, which has higher prediction accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd