• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于EEMD-RVM风力发电机故障诊断方法研究
Research on fault diagnosis method of wind turbine based on EEMD-RVM
Received:September 15, 2017  Revised:September 15, 2017
DOI:
中文关键词: 综合经验模态分解  风力发电机  早期故障诊断  相关向量机  振动信号
英文关键词: ensemble  empirical mode  decomposition, wind  turbine generator, early  fault diagnosis, relevance  vector machine, vibration  signal
基金项目:国家自然科学基金项目( 重点项目)
Author NameAffiliationE-mail
Niu Shengyu College of Electrical Engineering,Xinjiang University 40468367@qq.com 
Zhang Xinyan* College of Electrical Engineering,Xinjiang University xjcxzxy@126.com 
Yang Lulu College of Electrical Engineering,Xinjiang University 1344663163@qq.com 
Di Qiang College of Electrical Engineering,Xinjiang University 2477941993@qq.com 
Zhang Guanqi College of Electrical Engineering,Xinjiang University 19296980@qq.com 
Hits: 1943
Download times: 515
中文摘要:
      针对风力发电机早期故障表征不明显、能采集有效数据量较少、诊断结果精度较低等问题,本文提出一种运用综合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)结合相关向量机的方法对风力发电机多类故障进行早期诊断。首先,利用EEMD结合灰色关联度的方法对风机各类故障的振动信号进行预处理,提取最优故障特征;再通过相关向量机(Relevance Vector Machine,RVM)对提取的故障特征训练,并建立相应的故障诊断模型进行诊断。在实例中将本文所提方法EEMD-RVM与小波包分解 (Wavelet Packet Decomposition,WPD) 结合RVM以及EEMD结合最小二乘支持向量机LS-SVM(Least Square Support Vector Machine,LS-SVM)方法的诊断结果作对比,结果表明,EEMD-RVM方法具有可行性,且具有耗时短、精度高等优点。
英文摘要:
      Early fault characteristics of wind turbine generator is not obvious, less fault data can be collected, and the diagnosis accuracy is relatively low. A method of EEMD combined with RVM was proposed for early diagnosis by multiple faults of wind turbines. Firstly, pre-process the vibration signals of every faults of the wind turbine by EEMD which combined with the grey relational degree, and extract the optimal fault characteristics; then, train the fault characteristics by the RVM for establish the fault diagnosis model. Applying this method to a real diagnosis of wind turbine vibrating fault, by comparing the diagnostic results which obtained by WPD with RVM and EEMD with LS-SVM, the results show that the EEMD-RVM method is feasible and has the advantages of short time consuming and high precision.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd