• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于免疫离散粒子群算法的主动配电网PMU测量位置优化
PMU Measurement Location Optimization in Active Distribution Network Based on Immune Discrete PSO Algorithm
Received:September 26, 2017  Revised:October 06, 2017
DOI:
中文关键词: 主动配电网  状态估计  量测位置  粒子群算法
英文关键词: active  distribution network, state  estimation, measurement  position optimization, particle  swarm optimization  algorithm
基金项目:国家自然科学基金资助项目(51677071);
Author NameAffiliationE-mail
LI Weiguang* Department of Electrical and Electronic Engineering of North China Electric Power University,Baoding,071003 lwg_mvp@126.com 
LU Jinling China lujinling@126.com 
Hits: 1191
Download times: 476
中文摘要:
      主动配电网的状态估计是配电管理系统必不可少的组成要素,其估计结果的准确性受量测位置的影响较大。为了提高系统状态估计的精度,优化实时数据库,本文结合一种基于并行置信传播算法的状态估计方法,建立了以主动配电网状态估计误差最小为目标的PMU量测位置优化模型,同时提出了利用优化粒子初始位置的改进免疫离散粒子群算法进行模型求解。最后通过算例仿真,得到了量测装置的优化配置方案,且在该方案下,状态估计的精度明显提高。
英文摘要:
      The state estimation of active distribution network is an essential component of the distribution management system. However, the accuracy of the estimation results is affected by the measurement position significantly. In order to improve the accuracy of state estimation and optimize the real-time database, this paper established an optimal measurement location model which combined with a state estimation algorithm based on parallel belief propagation to minimize the state estimation error of an active distribution network. Furthermore, an improved immune particle swarm optimization algorithm which optimize the initial position of the particles is proposed to solve the model. Finally, an optimal configuration scheme of the measuring device is obtained by simulation. Under the scheme, the precision of the state estimation is improved obviously.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd