• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进人工鱼群算法的互感器Jiles-Atherton模型参数辨识
Parameter Identification of Jiles-Atherton Model Based on an Improved Artificial Fish Swarm Algorithm
Received:October 09, 2017  Revised:November 22, 2017
DOI:
中文关键词: J-A模型  参数辨识  人工鱼群算法  模拟退火算法
英文关键词: Jiles-Atherton  model, parameters  identification, AFSA, SAA
基金项目:国家自然科学基金项目( 重点项目)
Author NameAffiliationE-mail
Ling Guoying Electric Power Research Institute of Guangdong Power Grid,Guangzhou 13500015251@139.com 
Song Qiang* Electric Power Research Institute of Guangdong Power Grid,Guangzhou 13926095258@139.com 
Pan Feng Electric Power Research Institute of Guangdong Power Grid,Guangzhou 13926157619@163.com 
Xiao Xiaying State Key Laboratory of Advanced Electromagnetic Engineering and Technology,School of Electrical and Electronic Engineering,Huazhong University of Science and Technology 283051809@qq.com 
Li Kaicheng State Key Laboratory of Advanced Electromagnetic Engineering and Technology,School of Electrical and Electronic Engineering,Huazhong University of Science and Technology likaicheng@mail.hust.edu.cn 
Wang Lingyun State Key Laboratory of Advanced Electromagnetic Engineering and Technology,School of Electrical and Electronic Engineering,Huazhong University of Science and Technology 244149123@qq.com 
Hits: 2066
Download times: 685
中文摘要:
      为开展仿真平台下的电磁式互感器特性研究,需要对试验互感器建立精确可靠的磁滞模型。Jiles-Atherton(J-A)模型广泛应用在铁磁材料的磁滞建模与仿真实验中,其5个关键参数的准确度直接影响模型的拟合程度。本文提出一种结合模拟退火算法的改进人工鱼群算法对J-A模型进行参数辨识。改进算法初期使用人工鱼群算法将搜索域快速锁定在全局最优解的附近范围,当J-A模型拟合达到一定精度后,转而改用模拟退火算法继续进行局部的精确搜索。通过Matlab建模证实,改进算法同时解决了鱼群算法后期寻优效率较低以及退火算法难以大范围搜索的问题,能有效提高J-A模型参数辨识的时效性与精确度。
英文摘要:
      Jiles-Atherton (J-A) model is widely used in the field of hysteresis modeling and simulation experiments of ferromagnetic materials. The accuracy of the five key parameters of the J-A model directly affects the fitting degree of the model. This paper proposes an improved algorithm, combining the artificial fish swarm algorithm (AFSA) and simulated annealing algorithm (SAA), which can identify the parameters of J-A model. In the proposed algorithm, the AFSA is employed to quickly locate the search domain in the vicinity of the global optimal result. When the fitting degree reaches a certain accuracy, the SAA is used to search the global optimal result precisely in a small range. Simulation results show that the proposed algorithm are able to solve the problem that the AFSA is not efficient enough and the SAA is hard to search in a wide range, and it can effectively improve the time-validity and the accuracy of J-A model parameter identification.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd