• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
一种融合聚类和异常点检测算法的窃电辨识方法
A Method of Stealing Identification Based on Fusion of Clustering and Abnormal-Point Detection Algorithm
Received:October 19, 2017  Revised:October 20, 2017
DOI:
中文关键词: 聚类  异常点  用电量  窃电辨识
英文关键词: clustering, abnormal point, electricity consumption, stealing identification
基金项目:?基金项目:浙江省自然科学基金青年科学基金项目(LQ17E070003)
Author NameAffiliationE-mail
Li Ning* China Jiliang University 1775865044@qq.com 
Yin Xiaoming State Grid Zhejiang Changxing County Power Supply Co., Ltd 402650952@qq.ocm 
Ding Xuefeng State Grid Zhejiang Changxing Power Supply Company Limited d.aladdin@163.com 
Cui Hui China Jiliang University caihui@cjlu.edu.cn 
Wang Wei China Jiliang University wangwei@cjlu.edu.cn 
Hits: 1667
Download times: 503
中文摘要:
      聚类算法和异常点检测算法都是数据挖掘的重要方法。已有的聚类和异常点检测算法主要针对规律性数据挖掘,而没有将两种算法融合用于数据分析实现窃电辨识的方法。鉴于此,在分析相关算法原理和电量数据特征的基础上,提出一种融合聚类算法和异常点检测算法的窃电辨识方法,通过对电量异常数据的深入挖掘实现对窃电用户的准确辨识。理论分析和实验结果表明,该方法可有效提高窃电辨识的准确性,具有一定的实用性。
英文摘要:
      Clustering algorithm and abnormal point detection algorithm are important methods of data mining. Existing clustering and anomaly detection algorithms are mainly aimed at regular data mining, and there is no method to integrate the two algorithms for data analysis to realize stealing identification. In view of this, a new stealing identification method combines clustering algorithm and anomaly detection algorithm is proposed based on the analysis that principle of the relevant algorithms and the characteristics of the electricity data, it realizes accurate identification of stealing users through the deep excavation of the abnormal data. Theoretical analysis and experimental results show that this method can effectively improve the accuracy of stealing identification, and has certain practicability.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd