• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进卡尔曼滤波算法的短期负荷预测
Short-term load forecasting based on improved Kalman filter algorithm
Received:December 20, 2017  Revised:December 20, 2017
DOI:
中文关键词: 电力系统  卡尔曼滤波  负荷预测  MATLAB  智能算法
英文关键词: Power  system, Kalman  filter, Load  forecasting, MATLAB, Intelligent  algorithm
基金项目:
Author NameAffiliationE-mail
Liu Xin* School of Electric Engineering Information,Sichuan University 1347582743@qq.com 
Teng Huan School of Electric Engineering Information,Sichuan University 434988455@qq.com 
Gong Yubing School of Electric Engineering Information,Sichuan University 791583757@qq.com 
Teng Deyun School of Electric Engineering Information,Sichuan University 1938654044@qqq.com 
Hits: 2109
Download times: 587
中文摘要:
      对于电网的安全运行,短期的负荷预测是必不可少的。电力系统的负荷通常是随着时间呈现出一定的范围的非线性波动,这里根据电力系统中负荷特性的变化规律,提出了一种通过引入修正因子改进的卡尔曼滤波算法的方法实现了电力短期负荷预测。通过对成都地区的负荷进行短期预测,说明这种方法比较传统的卡尔曼滤波具有更高的预测精度,同时与其他的新型智能算法相比,具有收敛速度快、耗时短等优点。通过MATLAB仿真,说明这种改进后的算法对实现短期负荷预测提供了一条新的途径。
英文摘要:
      For the safe operation of power system, short-term load forecasting is essential. The load of the power system is usually with time showing a certain nonlinear wave range, according to the variation of load characteristics in power system, a method by introducing Kalman filtering algorithm with a modifying factor to achieve the short-term load forecasting. By forecasting short-term load in the Chengdu region, it shows that this method has a higher prediction accuracy compared with the traditional Calman filter. At the same time, compared with other new intelligent algorithms, it has the advantages like fast convergence and short time consumption. The MATLAB simulation shows that the improved algorithm provides a new way for short-term load forecasting.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd