• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于KL变换和KL散度的电网数据特征提取与分类
Feature Extraction and Classification in Smart Grid Data Based on KL-divergence and KL Transform
Received:January 22, 2018  Revised:January 22, 2018
DOI:
中文关键词: KL变换  KL散度  电网数据  特征提取  初始聚类  负荷曲线
英文关键词: KL transform  KL-divergence  grid data  feature extraction  initial clustering  load profile
基金项目:
Author NameAffiliationE-mail
lihuizhao* State Grid Hubei Electric Power Corporation 1473727966@qq.com 
王雪   
郭莹   
Hits: 2049
Download times: 704
中文摘要:
      智能电网用户行为特征的分析在电力营销策略中扮演者重要的角色。本文结合KL变换和KL散度的方法,提取与分类用电数据信息的特征,实现不同类型的用电数据划分。同时通过综合分析所有用户的日负荷曲线, 提取不同类型用户的典型日负荷曲线。研究结果表明:基于KL变换的方法,通过对原始数据的压缩和主要特征的保留,大大降低了智能电网数据提取与分类的计算量,提高了时间效率;基于KL散度的方法,通过对k-means算法中的k值和初始聚类中心的选择进行优化,提高了聚类效果的准确率;实例中电网用户正常数据为38组,可分为3类典型用户,迎峰用电型、错峰用电型、部分迎峰用电型。该研究结果可以更加有效地对电网用户用电行为进行分类,从而为售电公司进行业务拓展提供技术基础。
英文摘要:
      The analysis of behavior feature in smart grid users plays an important role in power marketing strategy. Based on KL_divergence and KL transform,this paper completed feature extraction and classification in smart grid data.It achieved grid data division of different types.Moreover, by composite analysis of the daily load profile in all users,it is extracted that the typical daily load profile in different types of users. The results prove that it is realized that the compression of raw data and the retention of main feature by means of KL transform, it is greatly reduced that calculation of extraction and classification in smart grid users,so it increases the time efficiency;it is optimized that the selection of initial clustering center and cluster number by means of KL-divergence, the accuracy of clustering is improved; the normal data of grid users in this instance is 38 groups, the users is divided into 3 categories: peak electricity type,peak avoidance electricity type and part meeting peak electricity type.The results can be used to classify behavior feature of smart grid users more effectively, it will provide a technical basis for business expansion of electric power company.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd