• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于红外图像匹配的零值绝缘子检测
Zero-insulator Detection Based on Infrared Images Matching
Received:January 26, 2018  Revised:February 22, 2018
DOI:
中文关键词: 零值绝缘子检测  图像匹配  SIFT算法  改进RANSAC算法  马氏距离  数据模型外点率  
英文关键词: zero-insulator detection, image matching, SIFT algorithm, improved RANSAC algorithm, Mahalanobis distance, ‘outers’ statistic rate of digital model
基金项目:国家重点研发计划(2017YFB0903400);,中国博士后科学基金(2012M51179)
Author NameAffiliationE-mail
Zhang Xiaochun Anshun power supply bureau,Guizhou power grid co,LTDAnshun 958761712@qq.com 
Ouyang Guangze Anshun power supply bureau,Guizhou power grid co,LTDAnshun 2567492397@qq.com 
He Hongying* School of Information and Electrical Engineering, Hunan University lhx20070322@sina.com 
Ding yujie Anshun power supply bureau,Guizhou power grid co,LTDAnshun 353383832@qq.com 
Hits: 1725
Download times: 688
中文摘要:
      针对零值绝缘子检测,提出一种SIFT算法与改进RANSAC法相结合的图像匹配检测方法。首先利用SIFT算法与欧式距离实现待测绝缘子串与图像库标准绝缘子串的图像特征提取及粗匹配,由于欧式距离可能造成部分特征的误匹配,而马氏距离采用协方差距离来度量数据间的距离,并考虑了特征矢量的各属性分量之间的相关性,本文将马氏距离与RANSAC算法相结合实现特征的精匹配。传统RANSAC算法在抽样模型及数据的检验上要遍历所有数据,耗费了大量时间。本文提出了一种基于数据模型外点率的自适应方法来减少RANSAC算法在检验抽样模型及数据上耗费的大量时间。试验结果表明,本文所提方法能准确地实现待测绝缘子串与图像库相应标准零值绝缘子串的匹配,实现零值绝缘子的准确识别。
英文摘要:
      A matching method is proposed for zero-insulator detection,which combines the Scale Invariant Feature Transform (SIFT)algorithm and an improved random sample consensus (RANSAC) algorithm. Firstly, SIFT algorithm and Euclidean distance function is adopted to extract image features and pre-matching between the testing zero-insulator string image and the standard zero-insulator string image in the image library. The Euclidean distance may cause mismatches of some features but Mahalanobis distance algorithm measures the distance between the data by covariance distance and the correlation between the components of the eigenvector is taken into accounted. So, the mismatching features are wiped out by RANSAC method combined with Mahalanobis distance algorithm in this paper. For it takes too much time by RANSAC method on the data and the models’ validity tests through all the data. An adaptive method based on the ‘outers’ statistic rate of sampled digital models is presented to minimize the running time for the data and models’ validity tests. Results of the experiments shows that the proposed method achieves precise and prompt detection for the zero-insulator.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd