• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
考虑空调参数识别的家居设备建模与优化
Modeling and optimization for residential load based on AC parameters learning
Received:March 02, 2018  Revised:March 02, 2018
DOI:
中文关键词: 自动需求响应  智能家居  参数识别  家庭能源管理
英文关键词: Automatic  demand response, smart  home, parameter  identification, home  energy management
基金项目:国家重点研发计划课题资助项目(2017YFB0902904);国家自然科学基金资助项目(51477122)。
Author NameAffiliationE-mail
Xu Jian School of Electrical Engineering,Wuhan University xujian@whu.edu.cn 
Jin Chengxu* School of Electrical Engineering,Wuhan University kingjin163@hotmail.com 
Liao Siyang School of Electrical Engineering,Wuhan University liaosiyang@whu.edu.cn 
Hits: 1374
Download times: 641
中文摘要:
      随着电网的发展,由发电跟踪负荷变化的传统运行模式面临挑战。信息技术提高居民负荷的响应能力,自动需求响应成为可能。首先,介绍家庭能源管理系统(HEMS)的结构和运行目标。然后对家居电器设备分类和建模,得到各类设备运行约束条件。考虑到空调负荷调节能力大,常用的等效参数模型(ETP)热参数难以获取影响应用,本文通过回归历史数据识别空调的运行参数。HEMS通过求解混合整数线性规划,可以在实时电价下实现对用电器的优化调度。最后,通过算例仿真验证HEMS参数识别的效果,分析用电设备的优化调度结果。
英文摘要:
      With the development of power grid a, the traditional operation method of controlling generation to deal with load fluctuation is being challenged. The development of information technology improves the ability of residential load to respond to grid, automatic demand response becomes possible. First, the structure and operational goals of home energy management system (HEMS) are introduced. Then home electrical appliances are classified and modeled to get their operation constraints. Considering that air conditioner is a large controllable load in household, the parameters of the commonly used equivalent thermal parameter (ETP) model are difficult to obtain, which impedes its application. A method of regression is utilized to learn the operating parameters of AC through analyzing historic data. HEMS can optimize operations of electric appliances under real-time electricity price by solving the mixed integer linear programming. Finally, through the example simulation, the effectiveness of AC parameters learning is verified, and scheduling results of the electric equipment are analyzed.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd