• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于纵横交叉算法的波浪发电装置最大功率跟踪控制
Maximum power point tracking control based on crisscross optimization algorithm for wave power generation
Received:March 04, 2018  Revised:April 13, 2018
DOI:
中文关键词: 波浪发电  最大功率点跟踪  纵横交叉算法  遗传算法  粒子群算法
英文关键词: wave energy generation, maximum power point tracking, crisscross optimization algorithm (CSO), genetic algorithm(GA), particle swarm optimization algorithm(PSO)
基金项目:国家自然科学基金资助项目(513770265);广东省科技计划项目(2016B090912006);广东省自然科学基金项目(2015A030313487);广东省教育部产学研合作专项资金(2013B090500089)
Author NameAffiliationE-mail
xiongfengjun* Guangdong University of Technology 1044421513@qq.com 
Yang Junhua Guangdong University of technology 804988867@qq.com 
沈辉   
吴丹琦   
杨金明   
Hits: 1492
Download times: 756
中文摘要:
      波浪能最大功率点跟踪控制中,常规遗传算法和粒子群算法存在局部最优问题,提出纵横交叉算法(CSO)控制方案。CSO的纵向交叉算子,在纵向交叉概率判定下进行个体维变量间的算术交叉,保证种群能够脱离局部最优状态;CSO的横向交叉算子完成个体间的随机配对与算术交叉,并将解空间全体分割成若干个子空间,每个子空间以配对个体为对角顶点,搜索子空间内部及邻域实现精细的局部搜索能力。通过纵、横交叉算子的交替作用,任何有益于实现全局最优的信息,都将被迅速地分发到种群的各变量中,用以改变搜索路径。仿真表明,在波浪周期发生变化时,纵横交叉算法能够实现最大功率点跟踪,并提高收敛速度。
英文摘要:
      In wave energy maximum power point tracking control, a local optimal problem exists in traditional genetic algorithm and particle swarm optimization algorithm, thus a novel control strategy was proposed based on crisscross optimization algorithm(CSO). Under the judgment of vertical crossover probability, the arithmetic crossover algorithms between the individual dimension variables were implemented with the vertical crossover operator of CSO to ensure that the population would avoid the local optimum state. The random pairing and arithmetic crossover algorithms between individuals were completed, and the entire solution space was divided into several subspaces with the horizontal crossover operator of CSO. The pairing individuals were taken as the diagonal vertices of each subspace to attain perfect local search capability by searching the subspaces interior and its neighborhoods. Any information contributed to achieving global optimality was rapidly distributed among the variables of the population to change the search path by the alternation of the crisscross operators.The simulation results indicate that as wave period changes, the maximum power point tracking control can be achieved and the convergence speed can be improved with the CSO.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd