• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于一种NW-FLNN神经网络的短期电价预测
Application of a new wavelet neural network in short-term electricity price forecasting
Received:March 08, 2018  Revised:March 08, 2018
DOI:10.19753/j.issn1001-1390.2019.010.013
中文关键词: 小波神经网络  随机矢量函数连接型网络  新型小波链神经网络  电价预测
英文关键词: wavelet neural network, random vector functional link net, new wavelet functional link neural network, electricity price forecasting
基金项目:全国工程专业学位研究生教育指导委员会立项项目(2016-ZX-095)
Author NameAffiliationE-mail
Yang Chunxia Taiyuan University of Technology 857024872@qq.com 
Wang Yaoli* Taiyuan University of Technology 2482077923@qq.com 
Wang Libo Taiyuan University of Technology 110388538@qq.com 
Chang Qing Taiyuan University of Technology 2481097078@qq.com 
Hits: 1765
Download times: 622
中文摘要:
      摘 要:针对传统神经网络收敛速度慢、容易陷入局部极值的问题,本文提出一种改进型小波神经网络以实现网络全局最优化。首先,将小波神经网络与随机矢量函数连接型网络相融合构建一种新型小波链神经网络(NW-FLNN);其次,以小波基函数作为NW-FLNN的隐含层的传递函数,并利用梯度修正法训练该模型各参数;最后,选用澳大利亚新南威尔士州电价数据作为实验数据集,分别对NW-FLNN神经网络、逆传播BP神经网络与小波神经网络进行预测性能比较。实验结果表明:该新型网络预测模型较BP神经网络与小波神经网络性能更优,可明显减少网络迭代次数与隐层神经元数目,且平均百分比误差最大降低至0.0317,满足实时性要求。
英文摘要:
      Abstract:Aiming at the slow convergence speed and easy to fall into the local extremum of traditional neural network, an improved wavelet neural network is proposed in this paper to realize the global optimization of network. Firstly, a novel wavelet functional link neural network (NW-FLNN) is constructed by combining wavelet neural network with random vector functional link net. Secondly, the wavelet basis function is introduced into the hidden layer of neural network, and the gradient correction method is used to train the network model. Finally,the New South Wales state electricity price data of Australia is selected as the experimental dataset, and the prediction performance of the new wavelet neural network, the back propagation neural network and ordinary wavelet neural network are compared, respectively. The experimental results show that the new network prediction model has better performance than BP neural network and wavelet neural network. It can significantly reduce the number of network iteration and the number of hidden neurons, and the average percentage error is reduced by 0.0317, which meets the real-time requirements.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd