• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进CS算法优化Elman-IOC神经网络的短期负荷预测
Short-term load forecasting based on Elman-IOC with improved CS algorithm
Received:April 03, 2018  Revised:April 03, 2018
DOI:
中文关键词: 短期负荷预测  Elman-IOC神经网络  输入-输出层连接  布谷鸟优化算法  混沌扰动
英文关键词: short-term load forecasting, Elman-IOC neural network, input-output layer connection, cuckoo optimization algorithm, chaotic disturbance
基金项目:全国工程专业学位研究生教育指导委员会立项项目
Author NameAffiliationE-mail
yangfangjun Taiyuan University of Technology 706417834@qq.com 
wangyaoli* Taiyuan University of Technology 384406073@qq.com 
wanglibo Taiyuan University of Technology 1107096603@qq.com 
changqing Taiyuan University of Technology 503657381@qq.com 
Hits: 1874
Download times: 684
中文摘要:
      为提高负荷预测精度,提出一种基于混沌定向布谷鸟算法优化Elman-IOC神经网络的短期负荷预测模型,首先对Elman神经网络拓扑结构进行改进设计,通过增添输入-输出层连接单元,加强网络并行运算能力,提高预测精度,然后在布谷鸟算法中,利用最优位置信息指导随机游动过程,同时引入混沌扰动算子,增强全局搜索能力,最后将算法应用于Elman-IOC神经网络参数优化,建立了短期负荷预测模型。实验结果表明,较之其他模型,本文模型具有更高的预测精度。
英文摘要:
      In order to improve the accuracy of load forecasting, a short-term load forecasting model based on Elman-IOC neural network with chaotic oriented cuckoo algorithm was proposed. Firstly, the Elman neural network topology is improved by adding the input-output layer connection unit, the network parallel computing capability is enhanced and the prediction accuracy is improved. Then, in the cuckoo algorithm, the optimal location information is used to guide the random walk process. At the same time, the chaos disturbance operator is introduced to enhance the global search ability. Finally, the algorithm is applied to Elman-IOC neural network parameter optimization, and a short-term load forecasting model is established. Experimental results show that compared with other models, this model has a higher prediction accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd