• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
考虑多方利益的居民小区电动汽车有序充电策略
A Coordinated Charging Strategy for Electric Vehicles in Residential Communities Considering multiple interests
Received:April 08, 2018  Revised:April 17, 2018
DOI:10.19753/j.issn1001-1390.2019.010.001
中文关键词: 电动汽车  有序充电  指导曲线  负荷跟随  移峰填谷
英文关键词: electric vehicles  coordinated charging  guide curve  load following  load shifting
基金项目:四川省科技厅重点研发项目(2017FZ0103)
Author NameAffiliationE-mail
Xiao Jiankang Sichuan University 405975605@qq.com 
Qiu Xiaoyan* Sichuan University 1425716268@qq.com 
Pan Yinji Sichuan University 405975605@qq.com 
Wu Jiawu Sichuan University 405975605@qq.com 
Hits: 2084
Download times: 558
中文摘要:
      随着电动汽车的普及率越来越高,大规模电动汽车的充电会造成电网负荷峰上加峰的现象,给电力系统的稳定运行带来风险和负担,如何进行移峰填谷、减小负荷波动成了当今电网非常关注的一个问题。对此,本文提出了一种上层优化指导曲线和下层实时负荷跟随相结合的实时优化模型。在上层总控中心,基于典型日常规负荷曲线和车辆出行预测数据,建立了以总负荷(常规负荷和EV充电负荷)峰谷差最小为目标的优化模型,得出一条电动汽车充电功率指导曲线;在下层智能控制中心,根据返回EV的状态和充电需求,计算EV充电优先级,以上层优化得到的功率指导曲线为跟随目标,来指导电动汽车的有序充电,实现负荷跟随。然后以某小区的常规负荷数据和EV用户出行的概率模型数据进行充电模拟,计算出相关的指标,与无序充电的结果进行对比。仿真结果表明,此有序充电控制策略能够有效地实现EV充电负荷的移峰填谷、降低负荷波动,同时也能够增加代理商的充电服务收益,满足用户的充电需求。
英文摘要:
      As electric car penetration is higher and higher, the charging of large-scale electric vehicle will cause power grid load to a peak and peak phenomenon,burden to risk and the stable operation of power system. Therefore, how to shift peak load and reduce load fluctuations has become an important problem for power grids to solve the question of EV charging. In this paper, a real - time rolling optimization model is proposed, in which the upper optimize guidance curve and the lower realizes load real - time following. In upper master control center, based on typical daily routine load curve and vehicle travel forecast data, establishes a optimization with the minimum of total load (normal load and EV charging load) peak valley, draw a optimization guide curve; The lower intelligent control center calculates EV charging priority according to the return of EV charging status and demand, then guide electric vehicles to charge in order following the power guide curve optimized in the upper. Then, the conventional load data of a community and the probability model data of EV users travel were used to simulate the charging, and the related indicators were calculated and compared with the results of unordered charging. Orderly charge simulation results show that this control strategy can effectively achieve the EV charging load peak shift, to reduce the load fluctuation, at the same time also can increase the recharge of the agent service revenue, meet the requirements of charging users.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd