• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进TLBO优化LSSVM的风电功率短期预测
Short-term prediction of wind power based on improved TLBO optimization LSSVM
Received:April 26, 2018  Revised:April 26, 2018
DOI:
中文关键词: 风电功率短期预测  改进TLBO  LSSVM  自适应教学因子  高斯变异算子
英文关键词: short-term forecast of wind power, improved TLBO, LSSVM, adaptive teaching factor, gaussian mutation operator
基金项目:国家自然科学基金资助项目(51477099); 上海市自然科学基金资助项目(15ZR1417300,14ZR1417200); 上海市教委创新基金项目(14YZ157,15ZZ106)
Author NameAffiliationE-mail
chengyali* Shanghai Dianji University 1397751867@qq.com 
王致杰   
刘三明   
江秀臣   
盛戈皞   
Hits: 1886
Download times: 827
中文摘要:
      为提高风电功率短期预测的精度,提出一种基于改进TLBO优化LSSVM的风电功率短期预测方法。首先对基本TLBO算法中的‘教’阶段进行改进,在采用自适应教学因子的同时改变所有搜索个体的平均值,从而能够自适应的提高TLBO在整个搜索空间的性能;然后改进TLBO算法的‘学’阶段,为维持种群的多样性,避免TLBO算法过早收敛和陷入局部最优,在学习阶段引入高斯变异算子;最后用改进的TLBO优化构建的LSSVM预测模型。以上海北沿风电场实测数据为例,仿真结果表明,与PSO 和 TLBO 优化 LSSVM 相比,改进的TLBO 优化 LSSVM 方法对短期风电功率预测具有更好的稳定性和更高的准确性。
英文摘要:
      In order to improve the accuracy of short-term forecasting of wind power, a short-term forecasting method based on improved TLBO optimization LSSVM is proposed. Firstly, to improve TLBO algorithm of "teach" stage, the adaptive teaching factor is used, at the same time, changing average of all search individuals, which can enhance the performance of TLBO in the whole search space; Then, the 'learning' stage of TLBO algorithm is improved to maintain the diversity of the population and avoid the premature convergence and local optimization of TLBO algorithm, and the gaussian mutation operator is introduced in the learning stage. Finally, the improved LSSVM prediction model is optimized with improved TLBO. Take the measured data of beiyan wind farm in Shanghai as an example, the simulation results show that with the PSO and TLBO compared to optimizing LSSVM, improved TLBO optimizing LSSVM method for short-term wind power prediction has better stability and higher accuracy
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd