• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于MODWT的变压器绕组轻微故障检测及分类研究
Study on the detection and classification transformer winding slight fault based on MODWT
Received:May 07, 2018  Revised:May 07, 2018
DOI:10.19753/j.issn1001-1390.2019.014.017
中文关键词: 变压器  绕组轻微故障  匝间电弧放电  等效瞬时励磁电感  MODWT
英文关键词: transformer, winding slight failure, partial arc discharge fault, equivalent instantaneous magnetizing inductance, MODWT
基金项目:国家自然科学基金项目( 面上项目)
Author NameAffiliationE-mail
yinxuan* Shanghai University of Electric Power yinx_shdl@163.com 
dengxiangli Shanghai University of Electric Power dengxlshdl@163.com 
gongpenghao Shanghai University of Electric Power 1582990357@qq.com 
Hits: 2022
Download times: 635
中文摘要:
      本文基于变压器在不同运行工况下的等效瞬时励磁电感的差异,利用最大重叠离散小波变换 (MODWT) 提取有效故障特征参数,实现对变压器绕组轻微匝间故障以及匝间电弧放电故障的检测。首先提取变压器在各种工况下的电气量,求取等效瞬时励磁电感,选取基于db4小波函数的最大重叠离散小波变换进行分析,提取特征量。将故障特征量作为决策树的训练集和测试集,从而实现变压器绕组轻微故障的识别以及分类。最后通过仿真证明,所提出的算法能够准确检测以及区分励磁涌流、轻微匝间短路故障以及匝间电弧放电故障。
英文摘要:
      Based on the difference of the equivalent instantaneous magnetizing inductance of transformer under different operating conditions of transformer, this paper proposes to used the maximal overlapping discrete wavelet transform (MODWT) to extract effective fault characteristic parameters, and realize the detection of transformer windings with slight inter-turn short circuit faults and partial arc discharge faults. Firstly, the electric quantity of the transformer under various working conditions is extracted to obtain the equivalent instantaneous magnetizing inductance. The maximal overlapping discrete wavelet transform based on db4 wavelet function is selected for analysis, and feature quantities are extracted. The fault feature quantity is used as the training set and test set of the decision tree to realize the identification and classification of slight transformer winding faults. Finally, the simulation results show that the proposed algorithm can accurately detect and distinguish between magnetizing inrush currents, slight inter-turn short circuit faults and partial arc discharge faults.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd