• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于贝叶斯网络的智能电表故障类型预测
The prediction of the fault type of smart meters based on the Bayesian Network
Received:May 14, 2018  Revised:May 14, 2018
DOI:
中文关键词: 贝叶斯网络  智能电能表  条件概率表  K2算法
英文关键词: Bayesian  network, Smart  meter, CPT, K2 algorithm
基金项目:用电信息采集运行维护及现场移动作业关键技术研究
Author NameAffiliationE-mail
zheng angang China Electric Power Research Institute zhengangang@epri.sgcc.com.cn 
ZHANG Mi* China Electric Power Research Institute 251133274@qq.com 
qu mingyu Beijing University of Posts and Telecommunications 745013661@qq.com 
zhao bing China Electric Power Research Institute zhaob@epri.sgcc.com.cn 
chen hao China Electric Power Research Institute chenhao2010@epri.sgcc.com.cn 
xiong qiu Beijing University of Posts and Telecommunications 745013661@qq.com 
Hits: 1899
Download times: 574
中文摘要:
      针对智能电能表受到外界各种因素影响出现的故障,本文提出了一种基于贝叶斯网络的智能电能表故障类型分类与预测模型。分析了造成智能表故障的各种因素和常见的故障类型,通过大量历史故障数据的训练,结合专家意见,采用了基于评分搜索的方法构建了贝叶斯网络结构,在此基础上进行了故障类型预测和决策分析,并对提出的方法进行验证。研究结果表明:该方法可以有效地对智能表的故障类型进行预测,计算效率高,具有较好的适用性。
英文摘要:
      For the failure of smart meter due to various external factors,this paper presents a classification and prediction model of smart meter fault type based on Bayesian networks. First of all, we analyzed the various factors that caused the failure of smart meter,and then training model with a large number of historical failure data, combined with expert advice, the Bayesian network structure is constructed based on scoring, The fault type prediction and decision analysis are carried out, and theSperformance ofStheSproposedSmethodisSverifiedS. The results show that this method can effectively predict the fault type of smart meter, and has high computational efficiency and good applicability.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd