• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
云模型改进萤火虫算法优化的模拟电路故障诊断
Analog circuit fault diagnosis optimized by cloud model improved firefly algorithm
Received:May 21, 2018  Revised:May 21, 2018
DOI:10.19753/j.issn1001-1390.2019.015.010
中文关键词: 萤火虫算法  最小二乘支持向量机  混沌映射  云模型  故障诊断
英文关键词: firefly  algorithm, least  squares support  vector machine, chaos  mapping, cloud  model, fault  diagnosis
基金项目:国家自然科学基金(61741403)资助项目 ,,国家自然科学基金项目( 重点项目)
Author NameAffiliationE-mail
Tan Enmin* School of Electronic Engineering and Automation, Guilin University of Electronic Technology tem0135@guet.edu.cn 
Zhang Xinran School of Electronic Engineering and Automation, Guilin University of Electronic Technology 554272930@qq.com 
Wang Cuncun School of Electronic Engineering and Automation, Guilin University of Electronic Technology 1525414375@qq.com 
Hits: 1425
Download times: 789
中文摘要:
      针对萤火虫算法(FA)优化最小二乘支持向量机(LSSVM)的结构参数时,存在早熟和后期收敛速度慢等问题,提出了一种云模型改进型萤火虫算法(CCAFA)优化LSSVM参数的算法。首先,混沌映射初始化FA的初始位置,以获得群体的多样性;其次,依据萤火虫的适应度值将种群划分为三个区间,利用云自适应进化策略调整某一区间的惯性权重,之后采用云模型对萤火虫的初始位置实施变异操作;最后,使用混沌序列对群体最优位置进行优化处理,增强群体的全局搜索能力。通过对典型的4个参考函数进行测试,以测验该算法的可行性。并将CCAFA-LSSVM模型应用于模拟电路的故障诊断中,实验结果表明,改进型算法的收敛速度快、全局搜索能力强,有一定的有效性。
英文摘要:
      Firefly algorithm (FA) optimizing Least squares support vector machine (LSSVM) structural parameters, there are problems such as premature convergence and slow convergence in the late stage, an improved cloud model firefly algorithm (CCAFA) algorithm for optimizing LSSVM parameters is proposed. Firstly, The chaotic map initializes the initial position of the FA to obtain the diversity of the population; Secondly, the population is divided into three intervals according to the fitness value of firefly, the inertia weight of a certain interval is adjusted by cloud adaptive evolution strategy, then the cloud model is used to mutate the initial position of the firefly; Finally, chaotic sequences are used to optimize the optimal population position and enhance the global search ability of the population. The typical four benchmark functions were tested to verify the feasibility of the algorithm. The CCAFA-LSSVM model is applied to the fault diagnosis of analog circuits, experimental results show that the improved algorithm has fast convergence speed and strong global search capability, the proposed algorithm has certain effectiveness.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd