• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于经验小波变换和相关向量机的断路器机械故障诊断
Circuit breaker mechanical fault diagnosis based on empirical wavelet transform and relevance vector machine
Received:May 21, 2018  Revised:May 21, 2018
DOI:
中文关键词: 关键词:断路器  故障诊断  经验小波变换  样本熵  相关向量机  
英文关键词: Keywords:circuit breaker, fault diagnosis, EWT, sample entropy, RVM
基金项目:
Author NameAffiliationE-mail
Xin Zhongliang Jiyuan Power Supply Company of Henan Electric Power Company tt_dxq@sina.com 
Huo Mingxia Jiyuan Power Supply Company of Henan Electric Power Company 2423667059@qq.com 
Jia Pengju Jiyuan Power Supply Company of Henan Electric Power Company 411212874@qq.com 
Han Guang Jiyuan Power Supply Company of Henan Electric Power Company hanguang1983@126.com 
LI Zhi Jiyuan Power Supply Company of Henan Electric Power Company 1073187169@qq.com 
Ding Qi* North China Electric Power University tt_dxq@163.com 
Hits: 2113
Download times: 691
中文摘要:
      为了更准确的提取断路器故障特性,得到更可靠的故障诊断结果,在振动信号的基础上,本文提出了一种基于经验小波变换(empirical wavelet transform,EWT)和相关向量机(relevance vector machine, RVM)的断路器机械故障诊断方式。首先提取不同故障振动信号,设置阈值来初始化信号傅立叶频域分解区间,利用EWT分解得到有限带宽的多个模态。然后计算样本熵参数,计算并作为特征向量。最后,将特征向量输入相关向量机(relevance vector machine, RVM),建立不同故障的模型,对测试样本进行诊断。通过与其他方法实验对比,本文方法具有更高的故障诊断识别率,更快的识别速度。
英文摘要:
      In order to extract the circuit breaker fault characteristics more accurately and get more reliable fault diagnosis results, this paper proposed a method based on empirical wavelet transform and relevance vector machine applied to the vibration signal. Different fault vibration signals should be extracted firstly. Setting thresholds to initialize the segments of the signal in the frequency domain, and multiple modes with limited bandwidth can be obtained by EWT decomposition. Then calculate the sample entropies of the modes which regard as the import vector of RVM. Finally, build various models of different fault to diagnose the test sample. Compared to other methods, this method has a higher fault diagnosis rate and faster recognition speed.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd