• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于Spiked模型的低信噪比环境电网异常状态检测
Spiked Population Model based Abnormal State Detection of Power System in Low SNR Environment
Received:June 14, 2018  Revised:June 14, 2018
DOI:
中文关键词: 动态阈值  Spiked模型  最大特征值  异常状态检测  全局信噪比估计
英文关键词: dynamic threshold  spiked population model  maximum eigenvalue  abnormal state detection  global SNR estimation
基金项目:国家自然科学基金项目( 重点项目);贵州省科技厅联合资金资助项目
Author NameAffiliationE-mail
Zhou Zhongqiang Department of Electrical Engineering,Guizhou University 623442582@qq.com 
Han Song* Department of Electrical Engineering,Guizhou University shan@gzu.edu.cn 
Li Hongqian Department of Electrical Engineering,Guizhou University 17822840703@163.com 
Hits: 1777
Download times: 639
中文摘要:
      为发展基于大数据技术的电网态势感知理论与方法,提出了一种基于Spiked模型电网异常状态动态辨识方法,该方法源于随机矩阵理论。首先,通过数据源矩阵的构造,窗口数据矩阵及其标准矩阵的构建,进而形成其样本协方差矩阵,并计算该矩阵的最大特征值;然后,利用由Kaiser窗函数校正的经典谱估计法进行全局信噪比估计,进而得出对应的动态阈值,并与最大特征值比较来进行异常状态判别;最后,借助MATLAB软件,案例分析在一个IEEE50机标准系统展开,涉及负荷异常跃变及三相短路接地故障,与传统的平均谱半径分析法的计算结果比较表明该方法具有抗噪性能高、适应性强的优点,同时对于非完整性信息有一定的鲁棒性。
英文摘要:
      In order to develop the theory and method of grid situation awareness based on big data technology, inspired from random matrix theory, this paper proposes a dynamic identification method for abnormal state detection in low SNR Environment based on spiked population model. It firstly constructs a data source matrix and obtains a moving split-window matrix and its standard matrix, then acquiring the sample covariance matrix. The global SNR estimation is performed using the classical spectral estimation method corrected by the Kaiser window function, from which a corresponding dynamic threshold is derived. In this way, the situation awareness and early warning for interconnected power systems could be achieved by calculating maximum eigenvalue of sample covariance matrix and the dynamic threshold to check violation. Utilizing MATLAB? software, the case studies have been carried on an IEEE 50-machine system, involving two main working conditions such as abnormalSload change and short circuit fault, the results shows that the proposed methodology has the advantage of higher noise resistance in comparison with the traditional mean spectral radius based method and preliminarily verifies that it wouldSbeSrobustSunderSincompleteSinformation.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd