• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于模糊聚类的电力客户用电行为模式画像
A Portrait of Power Users’ Behavior Mode Based on Fuzzy Clustering
Received:July 19, 2018  Revised:July 19, 2018
DOI:
中文关键词: 用电行为分析  客户标签  标签聚类  模糊聚类  客户画像
英文关键词: electricity consumption behavior analysis  user tags  fuzzy clustering  tag clustering  user portraits
基金项目:
Author NameAffiliationE-mail
WANG Cheng-liang* Hohai University,Jiangsu frontier electric technology co., ltd CCLLW@126.COM 
Hits: 2295
Download times: 837
中文摘要:
      随着电力客户数据采集频度不断提高、数据分析维度不断扩展,客户的用电行为变得更加复杂。客户标签和画像技术的发展,给客户用电行为分析带来了更直观、简洁的表现方式。本文基于海量的客户档案、负荷、电量数据,综合考虑客户用电特征、影响因素,建立了客户用电行为标签库,并采用模糊聚类算法进行客户用电模式分析,实现不同类型客户的用电行为模式画像。某地区20000户工商业客户的用电行为模式画像分析结果表明:本文选取的用电行为标签合理有效、采用的聚类算法效果显著、客户画像精准,能够为电力公司掌握客户用电习性、挖掘客户需求、提高服务水平提供有力支撑。
英文摘要:
      With the increasing of frequency of data acquisition and the dimension of data analysis, the analysis of household electricity consumption behavior becomes more complex. The development of user tag and portrait technology brings a more intuitive and concise expression to the analysis of user's electricity consumption. Based on massive user archives, power load and electricity consumption data, considering the user's power consumption characteristics and influencing factors, a user behavior tag library is built. Fuzzy clustering algorithm is used to cluster tags and achieve different types of electricity consumption behavior. The results of 2000 industrial and commercial users show that the selected tags of electricity consumption behavior is reasonable, the clustering algorithm is effective, and user portraits is precise. The results can provide powerful support for power companies to understand the user's electricity consumption habits, mine user's electric power needs and improve service level.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd