• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于贝叶斯优化XGBoost的现场校验仪误差预测
Error prediction of field calibrator based on bayesian optimization XGBoost
Received:July 23, 2018  Revised:July 27, 2018
DOI:
中文关键词: 现场校验仪  电能表  贝叶斯优化  XGBoost算法
英文关键词: field  calibrator, electric  energy meter, bayesian  optimization, XGBoost  algorithm
基金项目:国家自然科学基金项目( 重点项目)(51707135),中国博士后科学基金(2017M612499)
Author NameAffiliationE-mail
Xu Feng School of Power and Mechanical Engineering,Wuhan University 1990085396@qq.com 
Fang Yanjun* School of Power and Mechanical Engineering,Wuhan University yanjfang@163.com 
Hits: 1592
Download times: 701
中文摘要:
      针对不同工况下现场校验仪会出现不同程度偏差的问题,通过搭建多维条件实验平台探究了电压、电流、温度、湿度以及功率因数对校验仪误差的影响,提出利用XGBoost对复杂现场条件下校验仪误差进行预测的方法,形成了基于多维条件耦合的校验仪误差预测模型。另外针对XGBoost中参数选择问题,将贝叶斯优化算法应用到模型的参数寻优之中。多组实验验证结果表明该模型泛化性能和预测精度均优于随机搜索和网格搜索等超参数调整方法,能够对不同环境下现场校验仪的误差进行评估。
英文摘要:
      In order to solve the problem of varying degrees of deviation in the field calibrator at different working conditions, the influence of voltage, current, temperature, humidity and power factor on the error of the calibrator was explored by building a multi-dimensional condition experimental platform,then a method for predicting the error of calibrator under complex field conditions is proposed by using XGBoost,the calibrator error prediction model based on multidimensional conditional coupling was formed. In addition, aiming at parameter selection in XGBoost, bayesian optimization algorithm was incorporated into the parameter optimization of the model. The results show that the generalization performance and prediction accuracy of the model are superior to those of random search and grid search, and can be used to evaluate the error of the calibrator under different environment.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd