• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于变分模态分解的断路器机械故障诊断
Circuit breaker mechanical fault diagnosis based on variational mode decomposition
Received:July 23, 2018  Revised:July 23, 2018
DOI:10.19753/j.issn1001-1390.2019.020.014
中文关键词: 变分模态分解  局部极值法  特征提取  断路器  故障诊断
英文关键词: variational mode decomposition, local extremum method, feature extraction, circuit breaker, fault diagnose
基金项目:
Author NameAffiliationE-mail
Li Yonggang North China Electric Power University, Baoding tt_dxq@hotmail.com 
Ding Qi* North China Electric Power University, Baoding tt_dxq@163.com 
Zhao Shutao North China Electric Power University, Baoding 437841578@qq.com 
Hits: 1220
Download times: 526
中文摘要:
      断路器的振动信号包含了许多机械信息。为了更加精确的对断路器的故障进行识别,本文提出一种基于变分模态分解(variational mode decomposition, VMD)和支持向量机结合的方法。首先利用局部极值法确定合适的VMD分解模态数。其次通过VMD将信号分解成多个具有紧支性的模态,计算各模态的奇异值作为特征向量,将其输入支持向量机(support vector machine, SVM),训练故障模型。最后通过SVM诊断测试信号,成功对不同故障进行诊断。
英文摘要:
      The vibration signal of the circuit breaker contains a lot of mechanical information. In order to identify the fault of the circuit breaker more accurately, this paper proposes a method based on variational mode decomposition and support vector machine. Firstly, the local extremum method is used to determine the appropriate VMD decomposition modal number. Secondly, the signal can be decomposed into multiple tight modes by VMD, and calculate the singular values of each mode as feature vector to train fault model by SVM. Finally, the test signal is diagnosed by SVM, and different faults are successfully diagnosed.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd