• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
经济新常态下基于Verhulst-SVM的中长期负荷预测模型
Medium- and long- term load forecasting model based on verhulst-svm under new normal economy
Received:July 27, 2018  Revised:July 27, 2018
DOI:
中文关键词: 经济新常态  负荷预测  Verhulst模型  支持向量机
英文关键词: new normal economy, load forecasting, Verhulst model, support vector machine
基金项目:
Author NameAffiliationE-mail
zhang guanying School of Electrical Engineering,Hebei University of Technology,Tianjin gyzhang@hebut.edu.cn 
xian yiming School of Electrical Engineering,Hebei University of Technology,Tianjin 732362607@qq.com 
GE Lei-jiao* School of Electrical Information and Engineering,Tianjin University,Tianjin legendglj99@163.com 
wang ying State Grid Tianjin Electric Power Company,Tianjin 300010,China wangying@tj.sgcc.com.cn 
zhao binbing State Grid Tianjin Electric Power Company,Tianjin 300010,China zhaobinbin@tj.sgcc.com.cn 
wang yao School of Electrical Engineering,Hebei University of Technology,Tianjin colory@163.com 
Hits: 1795
Download times: 894
中文摘要:
      经济新常态背景下,电力系统中长期负荷预测面临着很多新问题,例如:GDP、人口等电力负荷影响因素呈“S”型曲线增长、电力负荷影响因素与电力负荷之间的不确定性增加、历史样本数量少等。为此,提出一种基于Verhulst-SVM的中长期负荷预测模型。首先,从经济新常态特征中提取影响电力负荷的主要因素,并分析各影响因素的发展趋势;然后,利用Verhulst模型对“S”型曲线增长的电力负荷影响因素进行预测,并采用支持向量机(support vector machine, SVM)替代线性回归预测模型,实现小样本、高不确定性条件下中长期负荷高精度预测。最后,通过天津市2015和2016年的负荷预测算例,验证了所提模型的精度和可靠性,可为经济新常态背景下中长期负荷预测提供借鉴。
英文摘要:
      Under the background of new economic normal, medium- and long- term load forecasting of power systems faces many new problems. For example, the factors affecting the power load such as GDP and population are “S”-shaped curve growth, the uncertainty between power load and power load influencing factors increases, and the number of historical samples is small. To this end, a medium- and long- term load forecasting model based on Verhulst-SVM is proposed. Firstly, the main factors affecting the electric load are extracted from the new economic normal characteristics, and the development trend of each influencing factor is analyzed. Then, the Verhulst model is used to predict the load influencing factors of the "S" curve growth. And the support vector machine (SVM) is used to replace the linear regression prediction model to achieve high-precision prediction of medium and long-term load under small sample and high uncertainty. Finally, by predicting the power load of Tianjin in 2015 and 2016, it is proved that the proposed model has high precision and reliability, which can provide reference for medium and long term power load forecasting under the background of new normal economy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd