• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于LoRa技术和GPU加速的台区拓扑辨识方法
Transformer Topology Identification Method Based on LoRa and GPU Acceleration
Received:August 08, 2018  Revised:August 08, 2018
DOI:10.19753/j.issn1001-1390.2019.021.015
中文关键词: LoRa  GPU加速  台区拓扑辨识  相似度
英文关键词: LoRa, GPU  acceleration, transformer  topology identification, similarity  degree
基金项目:
Author NameAffiliationE-mail
Li Guochang* Electric Power Research Institute, State Grid Electric Beijing Power Company gc_li@sohu.com 
Hits: 1553
Download times: 464
中文摘要:
      传统的台区拓扑辨识方法精确度低,易受干扰,效率低下。针对这一问题,本文提出了一种基于LoRa技术和GPU加速的台区拓扑辨识方法,旨在利用LoRa通讯技术、高性能计算技术以及大数据方法,对于大规模安装的智能电表的数据进行获取和分析,有效辨识台户之间的对应关系。文中采用了基于LoRa技术及“多采统传”协议压缩技术的海量高密度数据获取的方法,有效加强了数据的快速获取。同时,利用GPU并行加速的灰色关联分析法实现数据分析,有效提高了算法效率。算例测试表明,本文的台区拓扑辨识方法准确度高、计算效率高,具有工程应用的价值和潜力。
英文摘要:
      Traditional transformer topology identification methods have poor accuracy and efficiency and are easy to be interfered. In order to solve the problem, this paper proposes a transformer topology identification based on LoRa and GPU acceleration, which aims to obtain and analyze the data from large quantities of smart meters and effectively identify the corresponding relationship between transformers and meters, via LoRa communication technology, high performance computing technology and large data methods. This paper adopts high density data acquisition method based on LoRa and protocol compression techniques-‘Fast Acquisition and Slow Delivery’, which effectively strengthens the fast acquisition of data. Meanwhile, data analysis is implemented by GPU parallel accelerated grey correlation analysis method, which effectively improves the efficiency of the method. Numerical experiments show that the method proposed in this paper has high accuracy and computational efficiency, which has the value and potential of engineering applications.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd