• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于DGA特征量优选与改进磷虾群算法优化支持向量机的变压器故障诊断模型
Fault Diagnosis Model of Power Transformers Based on DGA Features Selection and Genetic Algorithm Optimization SVM
Received:August 08, 2018  Revised:August 08, 2018
DOI:10.19753/j.issn1001-1390.2019.021.018
中文关键词: 变压器  故障诊断  支持向量机  遗传算法  改进磷虾群算法  DGA特征量
英文关键词: Power transformer, Fault Diagnosis, Support Vector Machine, Genetic Algorithm, Improved Krill herd Algorithm, DGA feature
基金项目:
Author NameAffiliationE-mail
Zhang Yiyi Guangxi University yiyizhang@gxu.edu.cn 
Peng Hongbo Guangxi University 2273176396@qq.com 
Li Xin* Guangxi University 774028026@qq.com 
Zhou Liuliang Guangxi University 407415029@qq.com 
Zheng Hanbo Guangxi University seeksky163@163.com 
Liu Jiefeng Guangxi University liujiefeng9999@163.com 
Hits: 1920
Download times: 516
中文摘要:
      针对单一的特征气体或特征气体比值作为DGA特征量无法全面反映变压器故障分类的问题,本文从混合DGA特征量中优选出一组DGA新特征组合为输入,建立改进磷虾群(Improved Krill Herd,IKH)算法优化支持向量机(Support vector machine,SVM)的变压器故障诊断模型进行故障诊断。将SVM的c和s与11种候选特征量进行二进制编码,利用遗传算法结合支持向量机对DGA特征量进行优选,得到一组最优DGA新特征组合;利用IKH算法对SVM的参数进行优化,同时结合交叉验证原理构建IKH算法优化SVM的变压器故障诊断模型。基于IEC TC 10的诊断结果表明:与DGA全数据、三比值特征量相比,新DGA特征组合的故障诊断准确率分别高出10.14%和30.2%;IKHSVM准确率也要高于标准SVM和GASVM(分别为73.87%、81.13%和86.27%),说明该方法能有效诊断变压器故障。
英文摘要:
      In order to make up a single feature gas or feature ratios as DGA feature can not fully reflect the transformer fault, a preferred DGA feature set generate by the hybrid DGA feature set are used as the input vectors, and a transformer fault diagnosis model based on the improved krill herd (IKH) optimization support vector machine (SVM) is proposed. Firstly, the SVM parameters and 11 features are encoded by a binary code technique. Then, a preferred DGA feature set for fault diagnosis of power transformers is selected by Genetic Algorithm (GA) and SVM. Finally, optimizing the SVM parameters by GA, and conducting a transformer fault diagnosis model based on IKH algorithm optimization SVM combined with the cross validation principle. The fault diagnosis results based on IEC TC 10 show that the proposed DGA feature set increase the accuracy by 10.14% and 30.2% over the DGA data and IEC ratios. Furthermore, the accuracy of IKHSVM is better than the standard SVM and GASVM (accuracy rate are 73.87%、81.13% and 86.27%) that verify the accuracy of transformer fault diagnosis can be improved by the proposed method.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd