• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于XGBoost算法的新型短期负荷预测模型研究
A new short-term load forecasting based on XGBoost algorithm
Received:August 09, 2018  Revised:August 09, 2018
DOI:10.19753/j.issn1001-1390.2019.021.004
中文关键词: 短期负荷预测  XGBoost算法  电力系统  特征分析
英文关键词: short-term  load forecasting, XGBoost , power systerm, feature analysis
基金项目:国家自然科学基金项目(61202369,61401269,61572311),上海市科技创新行动计划地方院校能力建设项目(17020500900),上海市人才发展资金(201501),上海市教育发展基金会和上海市教育委员会“曙光计划”(17SG51)
Author NameAffiliationE-mail
Chen Jianqiang Electronic and Information Engineering College,Shanghai University of Electric Power chen_jianqiang17@163.com 
Yang Junjie* Shanghai DianJi University yangjunjie@shiep.edu.cn 
Lou Zhibin Shanghai Academy of Science & Technology zblou66@163.com 
Hits: 1635
Download times: 559
中文摘要:
      针对目前电网在负荷预测中所采集到的数据普遍存在着特征维度较少;特征关系不明;有效数据量较少的特点,为了提高电网短期负荷预测精度,本文提出一种基于XGBoost算法的新型负荷预测模型。基于XGBoost算法的负荷预测模型采用CART树作为基学习器,输入预处理后的历史负荷和特征数据,通过构建多个弱学习器逐层训练模型并得到模型,最后向模型输入测试集特征得到最终的预测结果。本文所搭建的负荷预测模型具有避免对数据特征的标准化、处理字段缺失的数据、不用关心特征间是否相互依赖、学习效果好的优点。根据真实电网数据实验结果,基于XGBoost算法的负荷预测平均绝对误差百分比下降到3.46%,比本文所对比的基于BP、GRNN、DBN神经网络的负荷模型预测值精度更高,表明本文所提模型的优越性。
英文摘要:
      At present, there are generally few feature dimensions, unclear relationship among different features, and small effective data volume to the data collected in load forecasting research. In order to improve the accuracy of short-term load forecasting, a new load forecasting model based on XGBoost algorithm is proposed. The load prediction model based on XGBoost algorithm uses CART tree as the basic learner, inputs the preprocessed historical load and characteristic data, then builds several weak learner, layer by layer trains models to get the model, and finally inputs the features of test set into model to get the final predicted results. The load forecasting model established in this paper has the advantages of avoiding the standardization of data features, processing data missing fields, not caring whether the features are interdependent or not, and good learning effect. According to the experimental results of real power grid data, the mean absolute percent error of load prediction based on XGBoost algorithm reaches 3.46%, which is more accurate than the predicted value of load model based on BP, GRNN and DBN neural network, indicating the superiority of the proposed model.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd