• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于参数优化的电力变压器故障诊断模型
Power transformer fault diagnosis model based on parameter optimization
Received:August 23, 2018  Revised:August 23, 2018
DOI:10.19753/j.issn1001-1390.2019.022.014
中文关键词: 电力变压器  故障诊断模型  最小二乘支持向量机  参数优化  混沌粒子群算法
英文关键词: Power transformer  Fault diagnosis model  Least square support vector machine  Parameter optimization  Chaotic particle swarm optimization algorithm
基金项目:
Author NameAffiliationE-mail
Cong Rili* State Grid East Inner Mongolia Economic Research Institute crl3456@163.com 
Zhao Mingyu State Grid East Inner Mongolia Economic Research Institute crl3456@163.com 
Zhou Yang State Grid East Inner Mongolia Economic Research Institute crl3456@163.com 
Lu Yan State Grid East Inner Mongolia Economic Research Institute crl3456@163.com 
Zhang Jikai State Grid East Inner Mongolia Economic Research Institute crl3456@163.com 
Qian Jiang State Grid Shanxi Yuncheng Power Supply Company,Shanxi Yuncheng crl3456@163.com 
Hits: 1971
Download times: 537
中文摘要:
      针对当前电力变压器故障诊断效率低、误差大的难题,提出了基于参数优化的电力变压器故障诊断模型。首先提取电力变压器故障的特征,将其作为最小二乘支持向量机输入,电力变压器故障类型作为输出,然后采用最小二乘支持向量机对电力变压器的故障诊断样本进行学习,构建电力变压器故障识别的分类器,并引入混沌粒子群算法对最小二乘支持向量机的参数进行优化,最后进行了电力变压器故障诊断的仿真对比测试。测试结果表明,本文模型可以准确辨识各种类型的电力变压器故障,获得较高正确率的变压器故障诊断结果,电力变压器故障诊断的速度,而且电力变压器故障诊断整体性能要优于当前其它电力变压器故障诊断模型。
英文摘要:
      Aiming at the problem of low efficiency and large error in power transformer fault diagnosis, a fault diagnosis model of power transformer based on parameter optimization is proposed. Firstly, the fault feature of power transformer is extracted as input of least squares support vector machine (LS-SVM), and the fault type of power transformer is output. Then the LS-SVM is used to learn the fault diagnosis samples of power transformer, and the classifier of power transformer fault identification is constructed, and the chaotic particle is introduced. The parameters of LS-SVM are optimized by the group algorithm. Finally, the fault diagnosis of power transformer is simulated and tested. Test results show that this model can accurately identify various types of power transformer faults, obtain a higher accuracy of transformer fault diagnosis results, power transformer fault diagnosis speed, and the overall performance of power transformer fault diagnosis is better than other current power transformer fault diagnosis models.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd