• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于短时傅里叶变换和稀疏表示的开关柜局部放电超声波图谱识别和分类方法
Method for Identifying and Classifying Ultrasonic Image of Partial Discharge in Switchgear Based on Short Time Fourier Transform and Sparse Representation
Received:August 23, 2018  Revised:August 23, 2018
DOI:
中文关键词: 局部放电  开关柜  超声波  短时傅里叶变换  稀疏表示  正交匹配追踪法  加速近端梯度法
英文关键词: partial discharge  switchgear  ultrasonic  short time Fourier transform  sparse representation algorithm  orthogonal matching pursuit  accelerating neighbor gradient
基金项目:
Author NameAffiliationE-mail
Liu Yunpeng* Department of Electrical Engineeing,North China Electric Power University liuyunpeng@ncepu.edu.cn 
Wang Jiangwei Department of Electrical Engineeing,North China Electric Power University wang_wjw@foxmail.com 
Pei Shaotong Department of Electrical Engineeing,North China Electric Power University peishaotong@ncepu.edu.cn 
Ji Xinxin Department of Electrical Engineeing,North China Electric Power University 779650985@qq.com 
Liu Yijin Department of Electrical Engineeing,North China Electric Power University 2330413270@qq.com 
Hits: 1504
Download times: 614
中文摘要:
      超声波局部放电检测技术作为一种非接触检测方法,具有抗电磁干扰能力强的优点。本文采集了开关柜中不同放电类型的局部放电超声波信号,使用短时傅里叶变换获得超声波信号的时频图,使用稀疏表示算法对时频图进行分类,能够快速准确地判断出是否发生放电,并判断属于以下哪种放电类型:球板放电、柱板放电、锥板放电、针板放电。在使用稀疏表示方法过程中,分别采用了正交匹配追踪法和加速近端梯度法两种方法进行稀疏求解,通过实验说明了这两种方法适用于不同的情况。实验证明该方法相比于传统多分类支持向量机方法具有更高的准确率、鲁棒性和稳定性,并且更适合解决局部放电识别和分类问题。
英文摘要:
      Ultrasonic partial discharge detection, as a non-contact detection method, has the advantages of strong electromagnetic interference resistance. In this paper, the different types of partial discharge ultrasonic signals in the switchgear are collected, the time frequency graph of the ultrasonic signal is obtained by short time Fourier transform, and the time frequency graph is classified by the sparse representation algorithm. It can quickly and accurately determine whether the discharge occurs and determine which of the following discharge types are: sphere plate discharge, cylinder plate discharge, cone plate discharge, needle plate discharge. In the process of using sparse representation method, two methods of orthogonal matching pursuit and accelerating neighbor gradient method are used to solve the sparse solution. The experiments show that the two methods are suitable for different situations. Compared with the traditional multi classification support vector machine (SVM) method, it has higher accuracy, robustness and stability. It is proved that the sparse representation method is more suitable to solve the problem of partial discharge recognition and classification.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd