• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于神经网络的光伏阵列多峰MPPT的研究
Research on multi-peak MPPT of PV array based on neural network
Received:September 11, 2018  Revised:September 11, 2018
DOI:
中文关键词: 多峰MPPT  基本阴影遮挡类型  局部阴影  BP神经网络
英文关键词: multi-peak  MPPT, basic  shadow occlusion  type, partial  shading, BP  neural network
基金项目:2017年辽宁省高校基本科研项目(LN201710157026);国家科技支撑计划项目(2012BAJ26B01);辽宁省本科教改立项一般项目(2016024)
Author NameAffiliationE-mail
Wu Dengsheng College of Information and Electrical Engineering,Shenyang Agricultural University wuds1994@outlook.com 
Wang Lidi* College of Information and Electrical Engineering,Shenyang Agricultural University wanglidi@163.com 
Liu Tong College of Information and Electrical Engineering,Shenyang Agricultural University 493991272@qq.com 
Meng Xiaofang College of Information and Electrical Engineering,Shenyang Agricultural University 2030944571@qq.com 
Hits: 1567
Download times: 485
中文摘要:
      为了减少神经网络训练数据的数量,根据局部阴影条件下光伏阵列的输出特性,提出基本阴影遮挡类型概念,使得神经网络仅需要训练少量数据,就可以准确地预测最大功率点电压。首先,通过实际光伏阵列数据测试仅训练基本阴影遮挡类型的BP神经网络对最大功率点电压的跟踪效果。然后,搭建光伏发电系统MPPT仿真系统,对比扰动法、固定电压法和BP神经网络结合扰动法在阴影类型、光照强度和温度3方面变化时对MPP的跟踪效果。最后通过分析,表明经过基本阴影遮挡类型训练的BP神经网络结合扰动法能够有效地跟踪最大功率点,即基本阴影遮挡类型能够减少神经网络跟踪多峰MPPT时训练数据的获取量。
英文摘要:
      For reducing the number of neural network training data, according to the output of the photovoltaic array under local shadow conditions, the concept is proposed about basic shadow occlusion type, so that the neural network only train small amount of data and the voltage of MPP can be accurately predicted. Firstly, the actual PV array data used to test the effect of BP neural network training on the tracking of the voltage of MPP only with the basic shadow shading type. Then, built the MPPT simulation system of photovoltaic power generation system and compared the perturbation method, fixed voltage method and BP neural network combined with the perturbation method to track the MPP. Finally, the analysis shows that the BP neural network combined with the perturbation method trained by the basic shadow occlusion type can effectively track the MPP, that is, the basic shadow occlusion type can reduce the acquisition of training data when the neural network tracks multi-peak MPPT.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd