• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于BOA-SVM的劣化绝缘子红外图谱诊断方法
Infrared Spectrum Diagnosis Method of Deteriorated Insulators Based on BOA-SVM
Received:September 30, 2018  Revised:September 30, 2018
DOI:
中文关键词: 支持向量机  贝叶斯优化  主成分分析  绝缘子  红外成像  故障诊断
英文关键词: Support vector machine, Bayesian optimization, principal component analysis, insulator, infrared imaging, fault diagnosis
基金项目:国家自然科学基金资助项目(51577069),中央高校基本科研业务费资助项目(2017XS117)
Author NameAffiliationE-mail
Pei Shaotong* School of Electrical Engineering,North China Electric Power University pst6161@126.com 
Liu Yunpeng School of Electrical Engineering,North China Electric Power University liuyunpeng@ncepu.edu.cn 
Chen Tongfan School of Electrical Engineering,North China Electric Power University 421317021@qq.com 
Wu Jianhua State Grid Hebei Electric Power Co., Ltd. maintenance branch wjhuse@sina.com 
Liang Lihui State Grid Hebei Electric Power Co., Ltd. maintenance branch lianglihui411@163.com 
Hits: 1517
Download times: 609
中文摘要:
      线路绝缘子是电力系统运行中的重要设备之一,准确判断绝缘子是否有缺陷问题,关系到整个电网的运行安全,为了提高故障诊断的准确率,本文提出了一种二进制支持向量机(SVM)分类器和贝叶斯优化(BOA)相结合的线路绝缘子故障诊断方法,用于绝缘子闪络过程中红外图谱的分类识别,通过提取绝缘子红外图谱中的方向梯度直方图特征,利用贝叶斯优化算法获得诊断模型的最优超参数来提高分类算法的准确率,并采用主成分分析法对提取特征进行降维来提高分类算法的效率。结果表明,采用贝叶斯优化支持向量机可以准确、有效地对绝缘子进行故障诊断,得到的分类模型比常用的网格搜索算法(GS)、随机搜索算法(RS)等算法准确率更高。
英文摘要:
      Line insulator is one of the important equipments in the operation of power system. It is related to the fault diagnosis of the insulator. It is related to the operation safety of the whole power grid. In order to improve the accuracy of fault diagnosis, this paper proposes a binary support vector machine (SVM) classification. Line insulator thermal fault diagnosis method combined with Bayesian optimization (BOA) for classification and identification of infrared spectrum in insulator flashover process, using Bayesian optimization algorithm by extracting directional gradient histogram features in insulator infrared spectrum The optimal hyperparameter of the diagnostic model is obtained to improve the accuracy of the classification algorithm, and the principal component analysis method is used to reduce the dimension of the extracted features to improve the efficiency of the classification algorithm. The results show that the Bayesian optimization support vector machine can accurately and effectively diagnose the insulators. The classification model is more accurate than the commonly used grid search algorithm (GS) and random search algorithm (RS).
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd