• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于次序依赖的电力数据集修复*
REPAIR ELECTRICITY DATA WITH ORDER DEPENDENCY
Received:October 10, 2018  Revised:October 10, 2018
DOI:10.19753/j.issn1001-1390.2019.024.001
中文关键词: 电力数据  数据质量  次序依赖  数据依赖验证
英文关键词: Electricity  data,data  quality,order  dependencies,dependency  validation
基金项目:国网上海市电力公司项目
Author NameAffiliationE-mail
Guo Naiwang State Grid Shanghai Municipal Electric Power Company guonw@foxmail.com 
Su Yun State Grid Shanghai Municipal Electric Power Company oppenvi@163.com 
Zhang Hongxiang School Of Computer Science Fudan University 17210240252@fudan.edu.cn 
Tan Zijing School Of Computer Science Fudan University zjtan@fudan.edu.cn 
Yuan Xiaoming* SHANGHAI RUNPOWER INFORMATION TECHNOLOGY CO,LTD 35407026@qq.com 
Hits: 1752
Download times: 594
中文摘要:
      数字化技术在电力系统中的广泛应用产生了大量的数据,对这些数据进行分析和挖掘可以产生巨大的价值。保证和提高数据质量是其中一个重要的过程,也是之后数据挖掘工作的基础。基于家用电力读数数据集的特征,本文使用次序依赖来描述数据遵循的准则。在此基础上,文章提出一种使用动态规划策略的、基于次序依赖来修复错误电力数据的修复算法。进一步的,文章对算法进行了时间复杂度上的优化,使算法在大数据集上能在合适的时间内完成修复。最后文章在算法运行时间,修复结果等多个维度对本文方法和对比的信号处理方法进行比较。实验表明,算法相较于常见的信号处理方法在电力数据集上具有显著的改善。
英文摘要:
      The wide application of digital technology in power systems generates a large amount of data. The analysis and mining of these data can generate great value. It is important to ensure and improve data quality, as the basis of further data mining works. This paper studies characteristics of household electricity data and uses order dependencies (ODs) to define data criterion on them. This paper then provides a repairing algorithm for electricity data based on dynamic programming. Further, the article optimizes the time complexity of the algorithm so that the algorithm can be repaired in a suitable time on a large data set. Finally, we conduct experiments to compare our approach against common signal processing methods in terms of multiple dimensions such as algorithm running time and repair quality. Experiments show that our algorithm has a significant improvement over the electricity data compared to these approaches.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd