• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于模糊聚类分类与Elman神经网络算法的居民用户短期用电量预测及修正方法
Short-term electricity consumption forecasting and correcting method for residential users based on fuzzy clustering classification and Elman neural network algorithm
Received:October 15, 2018  Revised:October 15, 2018
DOI:10.19753/j.issn1001-1390.2020.05.001
中文关键词: 用电量  短期预测  模糊聚类  Elman网络  影响因素加权
英文关键词: electricity  consumption, short-term  forecasting, fuzzy  clustering, Elman  network, weighting  of influencing  factors
基金项目:
Author NameAffiliationE-mail
Xu Binghan* School of Electrical Engineering and Automation,Wuhan University 594012818@qq.com 
Sun Yunlian School of Electrical Engineering and Automation,Wuhan University ylsun@whu.edu.cn 
Yi Shimin Guangdong Power Grid Co.Ltd. superstephen@sina.com 
Wang Huayou School of Electrical Engineering and Automation,Wuhan University 1485460253@qq.com 
Xie Wenwang School of Electrical Engineering and Automation,Wuhan University 280243097@qq.com 
Huang Yaxin School of Electrical Engineering and Automation,Wuhan University 70851308@qq.com 
Hits: 1714
Download times: 615
中文摘要:
      用电量预测是智能电网建设中的一个重要课题,准确的用电量预测对电网规划和经济部门的管理决策具有重要的指导意义。本文利用计量自动化系统每15分钟获得一次的居民用户用电量数据,提出基于模糊聚类与Elman神经网络算法的短期用电量预测及修正方法。该方法先通过模糊聚类将居民用户按用电行为分类,然后采用通径系数计算各类型影响用电量因素的权重,再将加权影响因素和历史用电量作为Elman网络的训练样本,进行短期用电量预测。最后采用修正算法对预测值进行修正。实例分析表明,该方法有效、可行。相比整体预测,该算法预测精度明显有所提高,且修正步骤使预测误差进一步降低。
英文摘要:
      Electricity consumption forecasting is an important issue in smart grid construction,being accurate means great reference value to power grid planning and economic sector management decision-making.In this paper, the short-term electricity consumption prediction and modification method based on fuzzy clustering and Elman neural network algorithm has been proposed, residential users’data collection can be accomplished by automatic metering system every 15 minutes.First, the approach classified the users according to the usage behavior by fuzzy clustering; next calculated the weight of each type of influencing factors with the path coefficient; then utilized the weighted factors and historical electricity consumption as the training samples of the Elman neural network; and finally, the modified algorithm is applied to get the optimized result.The analysis proved that after classification it’s effective and feasible with the obviously increased accuracy compared with the overall prediction, in addition, the modified algorithm further promoted the predictive accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd