• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
改进的Chirp信号LMMSE参数估计算法
Improved Linear Minimum Mean Square Error Estimation of the Parameters of Chirp Signals
Received:October 25, 2018  Revised:October 25, 2018
DOI:10.19753/j.issn1001-1390.2020.06.004
中文关键词: 参数估计  线性调频信号  贝叶斯估计  最小均方误差估计
英文关键词: parameter estimation, chirp signal, Bayes estimator, LMMSE
基金项目:
Author NameAffiliationE-mail
shenzhou* Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences shenzhou11@csu.ac.cn 
ZhangShancong Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences zhouzhou_csu@163.com 
Hits: 1415
Download times: 409
中文摘要:
      线性调频信号(Chirp信号)的参数估计是信号处理中长期研究的一个问题,其最大似然估计算法已经被提出并且得到广泛应用。然而在许多实际应用中,通常已经知道了被估计参数的分布,因此可以使用贝叶斯估计器的方法。在文中,通过加入先验知识,给出了参数的线性最小均方误差(LMMSE)估计算法。与传统的最大似然估计算法相比,此方法有更好的性能。同时,文中基于两种线性相位模型实现了LMMSE估计算法,一种是传统的线性相位模型,另一种是最近提出的最佳线性相位模型。实验结果表明基于最佳线性相位模型的估计器具有更好的性能。
英文摘要:
      Parameter estimation of chirp signals has been studied for a long time. The maximum likelihood estimator has been given and applied widely. However, in many applications, we have known the distributions of the parameters to be estimated and the Bayes estimator can be used. In this paper, by incorporating a priori knowledge, the linear minimum mean square error (LMMSE) estimation of the parameters is given. This method outperforms the traditional maximum likelihood estimator. Besides, the LMMSE estimation is realized based on two linear phase models. One is the traditional linear phase model and the other is the optimal linear phase model which is presented recently. The result shows that the estimator based on the optimal linear model has a better performance.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd