• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于无迹卡尔曼滤波的电力系统抗差动态估计
Robust Dynamic State Estimation for Power System Based on Unscented Kalman Filter
Received:October 25, 2018  Revised:October 27, 2018
DOI:10.19753/j.issn1001-1390.2020.04.001
中文关键词: 无迹卡尔曼滤波  抗差估计  测点正常率  不良数据
英文关键词: Unscented Kalman Filter, robust estimation, normal rate, bad data
基金项目:
Author NameAffiliationE-mail
Sun Yi Department of Electrical Engineering,Shanghai Jiao Tong University sunyi6031@163.com 
He Guangyu* Department of Electrical Engineering,Shanghai Jiao Tong University hhhxxjj@gmail.com 
Zhai Shaopeng Department of Electrical Engineering,Shanghai Jiao Tong University zsp1197@163.com 
Hits: 2113
Download times: 420
中文摘要:
      为解决电力系统动态状态估计准确性易受量测不良数据影响的问题,本文提出基于无迹卡尔曼滤波(Unscented Kalman Filter, UKF)的电力系统抗差动态估计方法。在预测步中引入时变噪声估计器处理未知系统噪声;利用新息向量判断量测是否存在异常,并使用基于测点正常率最大的静态估计方法辨识不良数据;然后构建更新因子矩阵降低不良数据在动态估计更新过程中的影响。将算法运用于IEEE14节点标准系统中,仿真结果表明该方法估计结果准确且抗差效果良好。。
英文摘要:
      The bad data may decrease the accuracy of power system dynamic state estimation, and even lead to the divergency of the results. This paper proposes a robust dynamic estimation algorithm based on Unscented Kalman Filter (UKF). Noise statistical estimator is introduced to deal with time-varying noise in the prediction step. Innovation vectors are used to judge whether the measurement is abnormal or not, and static estimation method based on maximum normal rate is used to identify bad data. The algorithm has been applied to IEEE 14-bus system. The simulation results show that the estimation results are accurate and robust.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd