• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于差分进化算法与BP神经网络的变压器故障诊断
Transformer fault diagnosis based on differential evolution algorithm and BP neural network
Received:October 28, 2018  Revised:October 28, 2018
DOI:10.19753/j.issn1001-1390.2020.05.010
中文关键词: BP神经网络  变压器故障  差分进化算法  网络模型
英文关键词: BP neural network, transformer fault, differential evolution algorithm, network model
基金项目:国家自然科学基金项目( 51667018),
Author NameAffiliationE-mail
kongdeqian Xinjiang University 15515733967@163.com 
zhangxinyan* Xinjiang University 1254708552@qq.com 
tongtao Xinjiang University 1378104278@qq.com 
gaoliang Xinjiang University 1793346200@qq.com 
zhangjiajun Xinjiang University 1624236670@qq.com 
guchaofan Xinjiang University 344896812@qq.com 
Hits: 1443
Download times: 625
中文摘要:
      针对BP神经网络在识别变压器故障时容易陷入局部最优、诊断精度低、收敛速度慢等缺点,提出一种自适应差分进化算法与BP神经网络相结合的变压器故障诊断方法。该方法采用差分进化算法优化BP神经网络初始权值和阈值,将优化结果赋值BP神经网络进行网络训练,最终得到用于变压器故障诊断的最佳网络模型。实验结果表明,该组合算法比传统BP神经网络具有更高的诊断精度和更快的收敛速度,是一种更适合变压器故障诊断的高效方法。
英文摘要:
      Aiming at the shortcomings of BP neural network, such as easily falling into local optimum, low diagnostic accuracy and slow convergence speed, a transformer fault diagnosis method based on adaptive differential evolution algorithm and BP neural network is proposed. This method uses differential evolution algorithm to optimize the initial weights and thresholds of BP neural network, and assigns the optimized results to BP neural network for network training. Finally, the optimal network model for transformer fault diagnosis is obtained. The experimental results show that the combined algorithm has higher diagnostic accuracy and faster convergence speed than the traditional BP neural network, and is a more efficient method for transformer fault diagnosis.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd