• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进天牛须搜索算法优化LSSVM短期电力负荷预测方法研究
LSSVM in short-term load forecasting based on improved Beetle Antennae Search Algorithm
Received:November 12, 2018  Revised:January 07, 2019
DOI:10.19753/j.issn1001-1390.2020.06.002
中文关键词: 天牛须搜索算法  短期负荷预测  支持向量机  粒子群算法  小波阈值去噪
英文关键词: BAS, short-term load forecasting, LSSVM,PSO, wavelet analysis
基金项目:
Author NameAffiliationE-mail
Yan Chongxi* College of Electrical Engineering and Information Technology,Sichuan University 785051288@qq.com 
Chen Hao College of Electrical Engineering and Information Technology,Sichuan University 1315861657@qq.com 
Hits: 2095
Download times: 591
中文摘要:
      为提高短期电力负荷预测精度。提出了一种天牛须搜索算法优化的LSSVM短期电力负荷预测模型。引入模拟退火算法的蒙特卡洛法则对优化算法进行改进,提高了该算法的稳定性。将经改进BAS算法优化后的LSSVM模型用于短期电力负荷预测问题。使用小波阈值去噪处理电力负荷数据,减少一些不确定性因素对负荷预测的影响,提高了预测精度。选择四川某地区电网实际历史负荷数据进行分析和预测,并与PSO-LSSVM、LSSVM预测模型进行对比分析。算例结果表明,本文提出的BAS-LSSVM预测模型与LSSVM相比预测精度提升了1.5%左右,与PSO-LSSVM相比算法运行时间缩短了70%,且算法稳定性更高,证明了该方法的实用性与有效性。
英文摘要:
      In order to improve short-term power load forecasting accuracy.A LSSVM short-term power load forecasting model based on search algorithm optimization is proposed.The Monte Carlo rule of simulated annealing algorithm is introduced to improve the algorithm, which improves the stability of the algorithm.The prediction precision is improved with the use of wavelet threshold denoising of power load data, which reduce the influence of uncertain factors on load forecasting.The actual historical load data of a regional power grid in Sichuan are selected for analysis and prediction,and compared with PSO-LSSVM and LSSVM prediction models.Numerical example shows that the BAS-LSSVM prediction model proposed in this paper has improved the prediction accuracy by 1.55% compared with LSSVM.Compared with PSO-LSSVM, the running time of the algorithm is reduced by 70%, and the algorithm is more stable,which prove the practicability and effectiveness of the method.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd