• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于灰色投影优化随机森林算法的输电线路舞动预警方法
Early warning method of transmission line galloping based on random forest optimized by grey relation projection
Received:December 25, 2018  Revised:December 29, 2018
DOI:10.19753/j.issn1001-1390.2020.09.007
中文关键词: 输电线路  舞动  预警方法  灰色投影  随机森林
英文关键词: Transmission line  galloping  early warning method  grey relation projection  random forest
基金项目:国家电网公司科技项目(52170216000A)
Author NameAffiliationE-mail
LU Ming State Grid Henan Electric Power Research Institute zhensheng0310@hust.edu.cn 
ZHAO Shujie State Grid Henan Electric Power Research Institute M201671453@hust.edu.cn 
LIU Zhensheng* Huazhong University of Science and Technology zhensheng0310@hust.edu.cn 
YANG Xiaohui State Grid Henan Electric Power Research Institute 454067327@qq.com 
LI Zhe State Grid Henan Electric Power Research Institute 450774569@qq.com 
SONG Libin Wuhan Data-cloud Information Technology Limited Company 13720235395@163.com 
Hits: 2135
Download times: 517
中文摘要:
      输电线路的覆冰舞动对电网的安全稳定运行提出较大考验。为了实现对舞动的准确预警,本文提出了一种基于灰色投影优化随机森林算法的舞动预警模型。将导线分裂数、直径、档距等内部因素以及风速、风向角、湿度等外部因素综合作为模型的输入特征量来建立基于随机森林算法的预警模型。此外,鉴于舞动样本少、舞动地形差异大且难以客观衡量等难点,本文提出利用加权灰色关联投影法来优化筛选与预测地形相似的历史数据集。利用舞动的历史数据对本模型进行算例验证,结果显示本模型的预警结果在准确率和空报率上相较于传统随机森林算法和BP神经网络具有明显优势。通过此方法,可为输电线路覆冰舞动预警提供一种新的解决路线。
英文摘要:
      The transmission line galloping poses a great challenge to the safe and stable operation of power grids. In order to achieve accurate early warning of transmission line galloping, an early warning method based on random forest optimized by grey relation projection was proposed in this paper. The input values of early warning method include internal factors (conductor splitting number, diameter, spacing, etc.) and external factors (wind speed, wind direction angle, humidity, etc.). In addition, in view of the difficulties such as fewer gallop-ing samples, great differences in galloping terrain and difficult to evaluate objectively, this paper proposed a weighted grey relational projection method in order to optimize the selection of historical data which is similar to the predicted terrain. The historical data of transmission line galloping was used to verify the effectiveness of the proposed model. The results show that the early warning results of this model have obvious advantages in accuracy and false alarm rate when comparing with traditional random forest algorithm and BP neural network. This method can provide a new solution for the early warning of transmission lines galloping.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd