• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进灰狼优化算法的移动机器人路径规划
Path Planning of Mobile Robot Based on Improved Grey Wolf Optimization Algorithm
Received:January 03, 2019  Revised:February 04, 2019
DOI:10.19753/j.issn1001-1390.2020.001.010
中文关键词: 移动机器人  路径规划  灰狼优化算法  改进灰狼优化算法  粒子群算法  遗传算法
英文关键词: mobile robot  path planning  gray wolf optimization algorithm  improved gray wolf optimization algorithm  particle swarm optimization  genetic algorithm
基金项目:国家自然科学基金(No.61863034)。
Author NameAffiliationE-mail
Liu Ningning* College of Electrical Engineering,Xinjiang University 2504235307@qq.com 
Wang Hongwei Xin Jiang university 2863610699@qq.com 
Hits: 2193
Download times: 614
中文摘要:
      针对移动机器人避障路径规划问题,在基本群智能算法灰狼优化算法的基础上,提出改进灰狼优化算法,测试函数证明了算法的稳定性、精确性和收敛性,进而将其首次应用于移动机器人避障路径规划问题,通过对改进灰狼优化算法的移动机器人避障路径进行研究,并与基本灰狼优化算法、粒子群算法、遗传算法比较,仿真结果证明了算法的稳定性、准确性和收敛性,对路径规划领域有十分重要的研究意义。
英文摘要:
      【】Aiming at obstacle avoidance path planning of mobile robot, an improved gray wolf optimization algorithm is proposed based on the basic swarm intelligence algorithm. The test function proves the stability, accuracy and convergence of the algorithm. Then it is applied to obstacle avoidance path planning of mobile robot for the first time. By studying the obstacle avoidance path of mobile robot with improved gray wolf optimization algorithm, it is compared with basic gray wolf optimization algorithm, particle swarm optimization algorithm and genetic algorithm. The simulation results show the stability, accuracy and convergence of the algorithm, which is of great significance in the field of path planning.□□□□□□□
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd