• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进神经网络算法的互感器在线监测系统关键技术研究
Key Technologies of Transformer Online Monitoring System Based on Improved Neural Network AlgorithmsResearch
Received:February 21, 2019  Revised:March 11, 2019
DOI:10.19753/j.issn1001-1390.2020.11.008
中文关键词: 电子式互感器  BP神经网络  粒子群  监测系统  故障诊断
英文关键词: Electronic  transformer, BP  neural network, particle  swarm, monitoring  system, fault  diagnosis
基金项目:
Author NameAffiliationE-mail
Chengang* Key Laboratory of Electric Energy Measurement of State Grid Corporation(State Grid Jiangsu Electric Power Co., Ltd. Marketing Service Center) chengang67896@163.com 
Xuminrui Key Laboratory of Electric Energy Measurement of State Grid Corporation(State Grid Jiangsu Electric Power Co., Ltd. Marketing Service Center) chengang67896@163.com 
Muxiaoxing Key Laboratory of Electric Energy Measurement of State Grid Corporation(State Grid Jiangsu Electric Power Co., Ltd. Marketing Service Center) chengang67896@163.com 
Guoyunchun State Grid Jiangsu Electric Power Co,Ltd Yangzhou power supply branch chengang67896@163.com 
Chenfei Key Laboratory of Electric Energy Measurement of State Grid Corporation(State Grid Jiangsu Electric Power Co., Ltd. Marketing Service Center) chengang67896@163.com 
Hits: 2144
Download times: 434
中文摘要:
      随着电网中电子式互感器广泛使用,互感器故障已成为亟待解决的问题。针对这一问题,本文设计了一种电子式互感器在线监测系统,对系统的组成和核心单元进行设计,结合BP神经网络和粒子群算法一起用于电子式互感器的故障诊断。并通过算例分析改进神经网络算法和BP神经网络算法的性能,结果表明,使用的诊断方法是有效和可行的。所做研究工作为我国互感器线监测系统的发展提供了参考和借鉴。
英文摘要:
      With the widespread use of electronic transformers in the power grid, transformer faults have become an urgent problem to be solved.In order to solve this problem, this paper designs the online monitoring system of electronic transformer, designs the composition and core unit of the system, and applies BP neural network and particle swarm optimization to the fault diagnosis of electronic transformer. The advantages and disadvantages of the improved neural network algorithm and BP neural network algorithm are compared and analyzed by numerical examples, the results show that the fault diagnosis method adopted in this paper is effective and feasible.The research work provides a reference for the development of transformer line monitoring system in China.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd