• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于多重分形-贝叶斯融合算法的变压器绕组机械状态识别
Based on multifractals–bayes fusion algorithm for transformer winding mechanical state recognition
Received:February 28, 2019  Revised:February 28, 2019
DOI:10.19753/j.issn1001-1390.2020.14.008
中文关键词: 变压器振动  绕组机械状态识别  绕组松动  多重分形  贝叶斯  故障诊断
英文关键词: transformer vibration, winding mechanical state recognition, loose winding, Multifractal, Bayes, fault diagnosis
基金项目:
Author NameAffiliationE-mail
zhao li hua Sichuan University tyorika@163.com 
zhang zhen dong Sichuan University 1351505867@qq.com 
liu hao Sichuan University 821827069@qq.com 
wu xiao wen Electric Power Research Institute of State Grid Hunan Electric Power Co., Ltd., 821128906@qq.com 
huang xiao long* Sichuan University 120655580@qq.com 
Hits: 1680
Download times: 444
中文摘要:
      针对变压器振动信号非线性特征及其绕组机械状态识别问题,该文引入多重分形与贝叶斯相结合的状态识别方法,搭建振动测试平台,采集配电变压器在不同负载电流下正常运行和存在绕组松动故障运行时的振动信号。运用多重分形理论对振动信号进行多重分形特征分析,提取出随变压器绕组机械状态变化明显的多重分形谱参数作为状态特征量,使用贝叶斯分算法对试验变压器状态特征量进行状态识别。研究结果表明:变压器振动信号具有较强的多重分形特性;多重分形谱参数αfmax、αmin在负载电流波动时变化不明显,绕组松动时变化明显;多重分形-贝叶斯算法能准确的识别出变压器负载电流变化时的正常状态与绕组松动时的故障状态,准确率都在98%以上,研究结论可为负荷多变情况下基于振动信号的变压器绕组故障诊断提供一种新思路和新算法。
英文摘要:
      In view of the nonlinear characteristics of transformer vibration signal and the problem of winding mechanical state identification, this paper introduces the state identification method combining multiple fractals and bayes, builds a vibration signal acquisition platform to collect the vibration signal of distribution transformer under normal operation of different load current and fault operation under loose winding. Then, the multifractal characteristics of the vibration signal are analyzed by using the multifractal theory, and the multifractal spectrum parameters which vary significantly with the mechanical state of the transformer windings are extracted as the state characteristic parameters. The result of research proves that the vibration signal of transformer has strong multifractal characteristics, the parameters of multifractal spectrum αfmax, αmin do not change obviously when the load current fluctuates, but change evident when the winding becomes loose. The multifractal-bayesian algorithm can accurately identify the normal state when the transformer load current changes and the fault state when the windings become loose, and the accuracy is above 98%. The research conclusion can provide a new idea and new algorithm for the transformer windings fault diagnosis based on the vibration signal in the case of variable load.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd