• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
电能质量治理设备运行状态识别及其治理效果评价*
Recognition of Operating State of Power Quality Compensation Equipment and Evaluation of its Effect
Received:March 25, 2019  Revised:March 25, 2019
DOI:10.19753/j.issn1001-1390.2020.03.010
中文关键词: 电能质量  治理设备  运行状态识别  治理效果评价  概率神经网络  模糊综合评价法
英文关键词: Power  quality, Compensation  equipment, Operation  status identification, Effect  evaluation, Probabilistic  neural network, Fuzzy  comprehensive evaluation
基金项目:国家自然科学基金项目(51807126)
Author NameAffiliationE-mail
Zhen Chao State Grid Anhui Electric Power Co,Ltd 2631172546@qq.com 
Zhang Jian State Grid Anhui Electric Power Co,Ltd 602753826@qq.com 
Ji Kun State Grid Anhui Electric Power Co,Ltd 1615096389@qq.com 
Wang Xin CEIEC Shenzhen Electric Technology Inc 331373335@qq.com 
Deng Lingfeng* College of Electrical Engineering and Information,Sichuan University 983969291@qq.com 
Wang Ying College of Electrical Engineering and Information,Sichuan University 769429505@qq.com 
Hits: 1421
Download times: 489
中文摘要:
      针对目前电网中电能质量干扰源复杂、用户侧治理设备管理困难的现状,文中提出了基于电网侧电能质量监测数据,对用户侧治理设备进行运行状态识别以及治理效果评价的算法,实现电网公司对用户侧电能质量治理设备的非侵入式监测。首先,文章利用概率神经网络,将电压偏差、三相电压不平衡度、电压谐波总畸变率以及电压长时闪变作为网络的输入参数,对治理设备的工况进行分类,以实现治理设备的运行状态识别;其次,通过对比治理设备投入前后的电能质量评估结果,结合模糊综合评价法来完成治理设备的治理效果评价。以安徽电网某变电站的监测数据为例,分析了所提电能质量治理设备运行状态识别方法和治理效果评价方法的实用性。
英文摘要:
      In view of the complex power quality disturbance sources and the difficult management of user-side power quality compensation equipment in power grid, this paper presents an algorithm for identifying the operation status of user-side compensation equipment and evaluating its effect based on the monitoring data of power quality on power grid side. Thus, the non-intrusive monitoring of compensation equipment on the user side can be realized by using the monitoring data. Firstly, the probabilistic neural network is used to classify the working conditions of compensation equipment by taking the voltage deviation, three-phase voltage unbalance, total harmonic distortion rate and long-term voltage flicker as the input parameters, so as to realize the evaluation of the operation status of the compensation equipment. Secondly, by comparing the results of power quality evaluation before and after the operation of compensation equipment, this paper uses the fuzzy comprehensive evaluation method to achieve the effect evaluation of compensation equipment. Taking the monitoring data of a substation in Anhui Power Grid as an example, the practicability of the proposed state identification method and the effect evaluation method of the compensation equipment is analyzed.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd