• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
相空间重构和SVR耦合的短期电力负荷预测
Short-term load forecasting based on phase space reconstruction and SVR coupling model
Received:April 01, 2019  Revised:April 02, 2019
DOI:10.19753/j.issn1001-1390.2020.16.017
中文关键词: 相空间重构  支持向量机  负荷预测  气象因素
英文关键词: spatial reconstruction  support vector machine  load forecasting  meteorological factors
基金项目:国家自然科学资助(51177047);
Author NameAffiliationE-mail
YANG Jie* Yunnan Power Grid Co,Ltd Kunming Power Supply Bureau,Kunming lnlyxhd@163.com 
LUO Chengchen Yunnan Power Grid Co,Ltd Kunming Power Supply Bureau,Kunming luochengchen@163.com 
ZHANG Silu Yunnan Power Grid Co,Ltd Kunming Power Supply Bureau,Kunming zhang_silu@126.com 
FAN Meiwei Yunnan Power Grid Co,Ltd Kunming Power Supply Bureau,Kunming fanmw1@163.com 
LI Xian Yunnan Yundian Tongfang Technology Co,Ltd,Kunming lixian1991@163.com 
Hits: 1518
Download times: 412
中文摘要:
      电力系统的短期负荷预测精度对智能电网安全运行有着重要影响,其中预测精度和训练步数至关重要,目前当地气象因素逐渐成为负荷预测中的关注点。以某市短期电力负荷为研究对象,建立了考虑日特征相关因素的 支持向量回归机短期电力负荷预测模型,随后对某市考虑气象及日期类型的电力负荷做出预测。研究表明:利用考虑实时气象因素的SVR预测模型对短期电力负荷进行预测精度较高;考虑气象及日期类型的预测误差比不考虑气象及日期的预测误差小;嵌入维数和时间延迟对负荷预测模型精度具有重要影响。
英文摘要:
      The short-term power load forecasting of the power system is an important part of the power grid management system. The prediction accuracy directly affects the stable and safe operation of the power grid, and the weather becomes more and more important in the load forecasting. This paper takes a city load as an example to study the short-term load forecast, and establishes the SVR prediction model which consider the relevant factors of daily characteristics. The results show that the SVR forecasting model considering real-time meteorological factors has higher forecasting accuracy for short-term power load. The forecasting error considering meteorological and date type is smaller than that without considering meteorological and date. The embedded dimension and time delay have greater impact on the accuracy of the forecasting model. The research results can provide reference for short-term load forecasting of power grid.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd