• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于无迹粒子滤波的配电网状态估计*
State estimation of distribution network based on traceless particle filter
Received:April 10, 2019  Revised:April 10, 2019
DOI:10.19753/j.issn1001-1390.2020.16.013
中文关键词: 配电网  状态估计  粒子滤波  无迹卡尔曼滤波  无迹粒子滤波
英文关键词: distribution  network, state  estimation, Particle  filtering, unscented  Kalman filter, unscented  particle filter
基金项目:
Author NameAffiliationE-mail
Luo Yongping College of Electrical Engineering,Guizhou University 960073677@qq.com 
Liu Min* College of Electrical Engineering,Guizhou University mlgroup666@163.com 
Tan Wenyong College of Electrical Engineering,Guizhou University 1592313832@qq.com 
Zhang Yegui College of Electrical Engineering,Guizhou University 1129045900@qq.com 
Xu Lin College of Electrical Engineering,Guizhou University 1120947626@qq.com 
Hits: 1367
Download times: 473
中文摘要:
      配电网状态估计是配电管理系统的重要组成部分。用于状态估计的数据通常存在不同程度的随机噪声干扰,不能直接用于配电网的运行分析,为获得更为精确的配电网状态信息,必须对量测数据进行滤波处理。针对无迹卡尔曼滤波(Unscented Kalman filter, UKF)灵活性差,滤波精度易受参数及滤波初值的制约;且标准粒子滤波(Particle filer, PF)选取重要性密度函数不合理的缺陷,文章将无迹粒子滤波(Unscented particle filter , UPF)算法应用于配电网状态估计。该算法将UKF和PF融合,用UKF结合最新的量测信息为PF生成重要性密度函数,将落在先验概率密度区域的粒子转移到高似然区域内,提高了PF的滤波性能。通过IEEE33节点系统算例分析,结果表明,UPF较UKF和PF具有更好的估计性能,且灵活性强,是一种有效的状态估计方法。
英文摘要:
      State estimation of distribution network is an important part of distribution management system. The data which was used for state estimation usually has random noise interference of different degrees and can"t be used for the operation analysis of distribution network directly. In order to obtain more accurate state information of distribution network, the measured data must be filtered. To settle the question that the flexibility of unscented Kalman filter (UKF)is poor, and the filtering accuracy is restricted by parameters and initial filtering values easily, and the importance density function selected by the standard particle filer(PF) is unreasonable, unscented particle filter(UPF)algorithm is applied to the State estimation of distribution network in this article. The algorithm combines UKF and PF,and combines UKF with the latest measurement information to generate the importance density function for PF. It transfers the particles falling in the prior probability density region to the high likelihood region. Then, the filtering performance of PF is improved. The results of IEEE33 node system show that UPF has better performance and flexibility than UKF and PF, and is an effective state estimation method.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd