• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进人工鱼群算法的配电网络重构
Reconfiguration of Distribution Network Based on Improved Artificial Fish Swarm Algorithm
Received:April 16, 2019  Revised:May 26, 2019
DOI:10.19753/j.issn1001-1390.2020.17.012
中文关键词: 分布式电源  配电网重构  改进的人工鱼群算法  差分进化策略
英文关键词: distributed  generation, distribution  network reconfiguration, improved  Artificial Fish  Swarm Alglorithm, Differential  Evolution strateg
基金项目:
Author NameAffiliationE-mail
Yang Xiaoming Department of Electrical Engineering,Shanghai DianJi University 1278073514@qq.com 
Lv Hongfang* Department of Electrical Engineering,Shanghai DianJi University lvhf@sdju.edu.cn 
朱辉   
Hits: 1110
Download times: 538
中文摘要:
      针对大规模分布式电源并网引起的配电网路拓扑结构及潮流分布变化,现有配电网重构算法不足以应对,提出一种改进的人工鱼群算(AFSA)对含分布式电源的配电网进行重构求解。针对AFSA收敛速度慢、觅食方向固定、灵活性低、陷入局部最优及搜索精度较低的缺陷,采用全方位觅食行为,并结合差分进化与AFSA,提高算法灵活性,增加种群多样性,使算法易于跳出局部极值,提高收敛精度。最后通过算例分析,验证所提算法有效。结果表明,与其它智能算法相比,改进的AFSA的收敛精度和收敛速度更佳,能够很好的应用于含分布式电源配电网的重构求解。
英文摘要:
      Aiming at the change of distribution network topology and power flow distribution caused by large-scale grid-connected distributed generation, the existing distribution network reconfiguration algorithm is not enough to deal with it. An improved Artificial Fish Swarm Algorithm(AFSA) is proposed to solve the distribution network reconfiguration with distributed generation. Aiming at the shortcomings of AFSA, such as slow convergence rate, fixed foraging direction, low flexibility, low localization and low search accuracy,using an all-round foraging behavior, and combined with differential evolution(DE) and AFSA, improves algorithm flexibility and increases population diversity, making the algorithm easy to jump out of local extremum and improve convergence accuracy. Finally, the analysis of the example shows that the proposed algorithm is effective. The results show that compared with other intelligent algorithms, the improved AFSA has better convergence precision and convergence speed, and can be applied to the reconstruction of distributed power distribution network.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd