• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于自适应容积卡尔曼滤波的主动配电网状态估计
State Estimation of Active Distribution Network Based on ACKF
Received:May 05, 2019  Revised:May 05, 2019
DOI:10.19753/j.issn1001-1390.2020.19.005
中文关键词: 无迹卡尔滤波  容积卡尔曼滤波  AUKF  ACKF  主动配电网
英文关键词: Unscented Kalman Filter  Cubature Kalman Filter  AUKF  ACKF  Active Distribution Network
基金项目:国家自然科学基金项目资助(61540067);贵州省科技创新人才团队项目(黔科合平台人才[2018]5615)
Author NameAffiliationE-mail
ZHANG Yegui College of Electrical Engineering,Guizhou University 1015702823@qq.com 
LIU Min* College of Electrical Engineering,Guizhou University mlgroup666@163.com 
SHI Qian College of Electrical Engineering,Guizhou University 1012523547@qq.com 
LUO Yongping College of Electrical Engineering,Guizhou University 960073677@qq.com 
SUN JiangShan College of Electrical Engineering,Guizhou University 2263103973@qq.com 
Hits: 1163
Download times: 433
中文摘要:
      有效的状态估计算法是确保电力系统安全、稳定、经济运行的前提条件。针对传统无迹卡尔滤波(unscented Kalman filter,UKF)参数选取难、灵活性差、高阶系统滤波精度低等缺陷,将数值稳定性较好的容积卡尔曼滤波(cubature Kalman filter,CKF)算法引入到配电网进行动态状态估计,并与改进后的自适应无迹卡尔滤波(Adaptive unscented Kalman filter,AUKF)算法进行对比,仿真分析表明CKF算法较AUKF算法具有较高的滤波精度以及较好的数值稳定性。该算法在系统负荷发生突变时滤波精度有所下降,为此进一步提出了自适应容积卡尔曼滤波(Adaptive cubature Kalman filter, ACKF)算法以改善状态估计性能。对三相不平衡电网进行算例仿真表明:ACKF算法相比较于CKF算法而言,滤波精度更高、鲁棒性更强。
英文摘要:
      An effective state estimation algorithm which provides a precondition for ensuring a safe, stable, and economic operation of the power system. Aiming at the shortcomings of the traditional unscented Kalman filter (UKF), such as the difficult question of choosing parameter, less flexibility and filter degradation of high order system. The cubature Kalman filter (CKF) with better numerical stability is introduced into distribution network dynamic state estimation. Compared with the improved adaptive unscented Kalman filter (AUKF) the simulation which show that CKF algorithm has higher filtering accuracy and better numerical stability than the AUKF algorithm. However, When the system load is abrupt, the filtering accuracy decreases. Therefore, in order to improve the estimation performance, an adaptive cubature Kalman filter (ACKF) algorithm is proposed. The simulation analysis is carried out in three-phase unbalanced distribution network which show that the AUKF algorithm has higher filtering accuracy and better numerical stability than the CKF algorithm.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd