• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于宽度学习的风光容量配置研究
Based on Board Learning System for the Capacity Configuration of Wind and Photovoltaic Power Generations
Received:May 11, 2019  Revised:May 11, 2019
DOI:10.19753/j.issn1001-1390.2019.013.008
中文关键词: 风光发电  宽度学习  均方根误差  容量配置
英文关键词: wind and photovoltaic power generations, board learning system(BLS), root mean square error (RMSE), capacity  configuration
基金项目:
Author NameAffiliationE-mail
Yin Zhongdong 1. North China Electric Power University yzd@ncepu.edu.cn 
Tu Jingjing* 1. North China Electric Power University shell2005@126.com 
Xu Yonghai 1. North China Electric Power University yonghaixu@263.net 
Hits: 1663
Download times: 596
中文摘要:
      针对风光发电的大量接入,将引起配电网规划与运行特征的根本性改变问题,本文提出一种基于宽度学习的风光容量配置方法。利用网络节点电压、风光电源出力等数据对宽度学习容量配置模型进行训练,模型精度和结果的合理性采用均方根误差和电压稳定性评价指标进行评估。以IEEE33节点系统作为算例进行仿真,给出了满足总投资成本和网络有功损耗最小的容量配置结果,并与支持向量机、核极限学习机进行对比分析,验证了所提模型和方法的可行性和有效性。
英文摘要:
      A large number access of wind and photovoltaic power generations will cause fundamental changes in the planning and operation characteristics of distribution networks. This paper proposes a capacity selection method based on board learning system. The board learning capacity configuration model is trained by using data such as network node voltage and power output. The accuracy of the model and the rationality of the results are evaluated by using root mean square error and voltage stability evaluation indicators. The IEEE33 node system is used as an example to simulate. The capacity selection results, which satisfy the total investment cost and the network active loss, are obtained. And compare with the support vector machine and the kernel extreme learning machine to verify the feasibility and effectiveness of the proposed model and method.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd