• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于机器学习的短期电力负荷预测方法研究
Research on Short-term Power Load Forecasting Method Based on Machine Learning
Received:May 22, 2019  Revised:May 22, 2019
DOI:10.19753/j.issn1001-1390.2019.023.011
中文关键词: 机器学习、负荷预测、RBF神经网络、岭回归估计、广义交叉验证
英文关键词: Mmachine  learning, Load  forecasting, RBF  neural network, Ridge  regression estimation, Generalized  cross validation
基金项目:
Author NameAffiliationE-mail
Xu Qing* State Grid Jiangsu Electric Power CO,LTD Research Institute, State Grid Key Laboratory of Electric Power Metrology Email:qing_xq@yahoo.com 
Zhou Chao State Grid Jiangsu Electric Power CO,LTD Research Institute, State Grid Key Laboratory of Electric Power Metrology zhouchao023@126.com 
Zhao Shuangshuang State Grid Jiangsu Electric Power CO,LTD Research Institute, State Grid Key Laboratory of Electric Power Metrology 15951834210@163.com 
Liu Jian State Grid Jiangsu Electric Power CO,LTD Research Institute, State Grid Key Laboratory of Electric Power Metrology 63400481@qq.com 
Gong Dan State Grid Jiangsu Electric Power CO,LTD Research Institute, State Grid Key Laboratory of Electric Power Metrology 15105168339@139.com 
Zhao Yongchun Nanjing Zhide Electronic Technology Co,Ltd Nanjing 149159952@qq.com 
Hits: 2538
Download times: 774
中文摘要:
      针对短期电力负荷数据具有明显周期性的特点,将基于机器学习引入到短期电力负荷预测领域,提出一种基于岭回归估计的RBF神经网络短期电力负荷预测方法,该方法利用机器学习算法RBF在非线性拟合方面的优势,结合岭回归对RBF神经网络输出层权值进行参数估计,有效消除输入多重共线性问题,采用广义交叉验证法对构建的模型进行评估,寻找最优岭参数,提高电力负荷预测精度。通过实际负荷预测案例,与传统BP神经网络负荷预测方法进行比对,验证了本文提出的电力负荷预测方法较传统方法具有较好的稳定性和较高的预测精度,为电力负荷预测提供了新思路。
英文摘要:
      According to the characteristics of short-term electric power load data has obvious cyclical, the machine learning is introduced into the short-term power load forecasting field, and a the RBF neural network short-term power load forecasting method based on ridge regression estimates is proposed, the method using the advantages in nonlinear fitting of RBF machine learning algorithm, combined with ridge regression parameters to estimate RBF neural network output layer weights, effectively eliminate the input multicollinearity problem, the generalized cross-validation method is adopted to evaluate the load forecasting model, to find the optimal ridge parameter, improve the power load forecasting accuracy.By comparing the actual load forecasting case with the traditional BP neural network load forecasting method, it is verified that the power load forecasting method proposed in this paper has better stability and higher prediction accuracy than the traditional method.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd