• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进磷虾群算法优化Elman神经网络的PEMFC电堆建模
PEMFC STACK MODELING BASED ON ELMAN NEURAL NETWORK OPTIMIZED BY IMPROVED KRILL HERD ALGORITHM
Received:May 29, 2019  Revised:May 29, 2019
DOI:10.19753/j.issn1001-1390.2021.03.004
中文关键词: PEMFC电堆模型  Elman神经网络  磷虾群算法  改进  自适应莱维飞行  偏好随机游动
英文关键词: PEMFC stack model  Elman neural network  krill herd algorithm  improve  adaptive Levi flight  bias random walk
基金项目:中央科研基本业务费支持
Author NameAffiliationE-mail
zhang ying Hefei University of Technology 970777514@qq.com 
su jianhui Hefei University of Technology su_chen@126.com 
wang haining* Hefei University of Technology ahwhn@126.com 
du yan Hefei University of Technology dydf@sina.com 
shi yong Hefei University of Technology shiyongmail@yeah.net 
Hits: 1525
Download times: 418
中文摘要:
      摘 要:质子交换膜燃料电池(PEMFC)电堆的优化控制需要精确的电堆模型作为基础。现有的基于Elman神经网络建立的PEMFC电堆模型已具有较好的精度,但是此种电堆模型仍然存在容易陷入局部极值、结果无法重现等问题。考虑将自适应莱维飞行和偏好随机游动两种机制引入基本磷虾群(Krill Herd,KH)算法得到一种改进的磷虾群(Improved Krill Herd,IKH)算法用以优化神经网络的初始参数,进而建立基于IKH-Elman网络的PEMFC电堆模型。仿真结果表明,IKH算法用于优化神经网络可同时保证更高的寻优精度和更快的收敛速度;在预测的精度和稳定性上此种电堆模型也具有一定优势。
英文摘要:
      Abstract:Optimal control of proton exchange membrane fuel cell (PEMFC) stacks is required to establish an accurate stack model. The existing PEMFC stack model based on Elman neural network has good precision, but this model still has problems such as easy to fall into local extremum and the result cannot be reproduced. Considering introducing adaptive Levy flight and preference random walk into the basic Krill Herd (KH) algorithm, an improved Krill Herd (IKH) algorithm is obtained to optimize the initial parameters of the neural network, and then a PEMFC stack model based on IKH-Elman network is established.The simulation results show that the IKH algorithm used to optimize the neural network can guarantee higher search accuracy and faster convergence
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd