• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于量子粒子群优化最小二乘支持向量机的变电站全寿命周期成本预测研究
Life Cycle Cost Prediction of Substation Based on QPPO and Least Squares Support Vector Machine
Received:July 05, 2019  Revised:July 05, 2019
DOI:10.19753/j.issn1001-1390.2021.06.011
中文关键词: 全寿命周期成本  量子粒子群  最小二乘支持向量机  特征参数  适应度函数
英文关键词: life  cycle cost, quantum  particle group, LS-SVM, characteristic  parameters, fitness  function
基金项目:
Author NameAffiliationE-mail
Xiong Zhiwei* School of Electrical and Automation,Wuhan University 2549066451@qq.com 
Xiong Yuanxin School of Electrical and Automation,Wuhan University 3041706823@qq.com 
Xiong Yi Hubei Electric Power Corporation Economic and Technological Research Institute 361615308@qq.com 
Hits: 1644
Download times: 443
中文摘要:
      变电站的规划设计与建设是电力工程建设的重点内容,快速的对变电站全寿命周期成本进行准确预测对变电站的建设具有指导意义。本文建立基于量子粒子群优化最小二乘支持向量机的变电站全寿命周期成本预测模型,将变电站全寿命周期内相关特征指标作为模型的输入,输出为变电站全寿命周期成本。通过仿真算例对比了QPSO优化LS-SVM,PSO优化LS-SVM,传统LS-SVM,BP神经网络四种预测模型的预测结果与相关性能指标。仿真结果表明QPSO优化LS-SVM模型具有更好的预测精度,在变电站设计建设时能够快速准确的对全寿命周期成本进行预测评估,提高变电站建设的经济性。
英文摘要:
      The planning, design and construction of substation is the key content of power engineering construction. The rapid prediction of the full life cycle cost of substation has guiding significance for the construction of substation. In this paper, a substation full life cycle cost prediction model based on quantum particle swarm optimization least squares support vector machine is established. The relevant characteristic index of the substation life cycle is used as the input of the model, and the output is the substation full life cycle cost. The simulation results are compared with the prediction results of QPSO optimized LS-SVM, PSO optimized LS-SVM, traditional LS-SVM, BP neural network four prediction models and related performance indicators. The simulation results show that the QPSO optimized LS-SVM model has better prediction accuracy, and can predict and evaluate the life cycle cost quickly and accurately during substation design and construction, and improve the economics of substation construction.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd