• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于贝叶斯优化随机森林的变压器故障诊断
Transformer fault diagnosis based on bayesian optimized random forest
Received:July 08, 2019  Revised:July 11, 2019
DOI:10.19753/j.issn1001-1390.2021.06.024
中文关键词: 变压器  DGA  故障诊断  贝叶斯优化  RF算法
英文关键词: transformer, DGA, fault diagnosis, bayesian optimization, RF algorithm
基金项目:
Author NameAffiliationE-mail
Wang Xue Department of Electrical Engineering,North China Electric Power University wangxuedl@126.com 
Han Tao* Department of Electrical Engineering,North China Electric Power University ezrealht@126.com 
Hits: 2034
Download times: 538
中文摘要:
      针对集成学习参数众多,缺乏高效精确的参数寻优方法的问题,文章提出了基于贝叶斯优化随机森林(RF)的变压器故障诊断方法。该方法采用了多个并行的CART决策树构成RF故障诊断模型,然后将高斯过程(GP)作为概率代理模型、提升策略(PI)作为采集函数,构建贝叶斯优化(BO)算法,进行RF模型参数寻优。同时对支持向量机(SVM)和K最近邻(KNN)分别进行贝叶斯优化,用3种模型分别进行故障诊断。并在RF模型上,将贝叶斯优化与随机搜索优化进行寻优性能对比。实验结果表明:与单一算法诊断相比,RF集成策略具有更高的故障诊断精度;贝叶斯优化方法适用于各种算法,诊断效果较未优化时均有明显提高;贝叶斯优化与随机搜索优化相比,贝叶斯优化方法能够搜寻到更优的模型参数,寻优效率更高。
英文摘要:
      Aiming at the problem of ensemble learning having many parameters and lack of efficient and accurate parameter optimization methods, this paper proposes a bayesian optimized random forest (RF) transformer fault diagnosis method. The method uses multiple parallel CART decision trees to form an RF fault diagnosis model. Then, the Gaussian process is used as a probabilistic proxy model and a lifting strategy (PI) as an acquisition function to construct a bayesian optimization algorithm for RF model parameter optimization. At the same time, bayesian optimization is performed on support vector machine (SVM) and K nearest neighbor (KNN) respectively, and fault diagnosis is performed by three models. On the RF model, bayesian optimization and random search optimization are compared to optimize performance. The experimental results show that the RF integration strategy has higher fault diagnosis accuracy than the single classifier. When bayesian optimization method is applied to various algorithms, the diagnostic performance is significantly improved compared with the unoptimized. Compared with random search optimization, bayesian optimization method can find better model parameters with higher efficiency.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd